[An advanced imaging method for measuring and assessing meibomian glands based on deep learning].

睑板腺 医学 眼科 眼睑
作者
Yunyun Zhou,Yu Yao,Yifei Zhou,Yuejiao Tan,Longhuo Wu,Yiqiao Xing,Yanning Yang
出处
期刊:PubMed 卷期号:56 (10): 774-779 被引量:6
标识
DOI:10.3760/cma.j.cn112142-20200415-00272
摘要

Objective: To evaluate the application value of a deep-learning-based imaging method for rapid measurement and evaluation of meibomian glands. Methods: Diagnostic evaluation study. From January 2017 to December 2018, 2 304 meibomian gland images of 576 dry eye patients who were treated at the Eye Center of Wuhan University People's Hospital with an average age of (40.03±11.46) years were collected to build a meibomian gland image database. These images were labeled by 2 clinicians, and a deep learning algorithm was used to build a model and detect the accuracy of the model in identifying and labeling the meibomian glands and calculating the rate of meibomian gland loss. Mean average precision (mAP) and validation loss were used to assess the accuracy of the model in identifying feature areas. Sixty-four meibomian gland images apart from the database were randomly selected and evaluated by 7 clinicians independently. The results were analyzed with paired t-test. Results: This model marked the meibomian conjunctiva (mAP>0.976, validation loss<0.35) and the meibomian gland (mAP>0.922, validation loss<1.0), respectively, thereby achieving high accuracy to calculate the area and ratio of meibomian gland loss. The proportion of meibomian glands marked by the model was 53.24%±11.09%, and the artificial marking was 52.13%±13.38%. There was no statistically significant difference (t=1.935, P>0.05). In addition, the model took only 0.499 second to evaluate each image, while the average time for clinicians was more than 10 seconds. Conclusion: The deep-learning-based imaging model can improve the accuracy of the examination and save time and be used for clinical auxiliary diagnosis and screening of diseases related to meibomian gland dysfunction.(Chin J Ophthalmol, 2020, 56: 774-779).目的: 探讨睑板腺图像深度处理分析方法的临床应用价值。 方法: 诊断评价研究。采集2017年1月至2018年12月就诊于武汉大学人民医院眼科中心年龄(40.03±11.46)岁的干眼患者的2 304幅睑板腺图像构建睑板腺图像数据库,由2名临床医师对图像进行标记,利用深度学习算法建立模型,检测模型对睑板腺识别及标注的准确性并计算睑板腺缺失率。采用平均精度均值(mAP)及验证集损失值评价模型对特征区域识别的准确性。并随机选取64幅数据库以外的睑板腺图像,由7名受试医师独立评估后与模型评估结果进行统计性t检验。 结果: 模型对睑结膜进行标记的mAP>0.976,验证集损失值<0.35;对睑板腺标记的mAP>0.922,验证集损失值<1.0。模型标记的睑板腺比例为53.24%±11.09%,人工标记为52.13%±13.38%,差异无统计学意义(t=1.935,P>0.05)。模型评价每幅图像仅需0.499 s,而临床医师用时平均超过10 s。 结论: 该睑板腺图像深度处理方法可提高临床检查结果的准确性,提高诊断效率,可用于睑板腺功能障碍相关疾病的临床辅助诊断和筛查。(中华眼科杂志,2020,56:774-779).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
猪猪hero应助李锐采纳,获得10
刚刚
猪猪hero应助李锐采纳,获得10
刚刚
CAOHOU应助李锐采纳,获得10
1秒前
南山无梅落应助李锐采纳,获得10
1秒前
pluto应助李锐采纳,获得10
1秒前
dypdyp应助毅诚菌采纳,获得10
1秒前
Magali应助李锐采纳,获得30
1秒前
种田发布了新的文献求助10
1秒前
归尘应助李锐采纳,获得10
1秒前
归尘应助李锐采纳,获得10
1秒前
CAOHOU应助李锐采纳,获得10
1秒前
3秒前
11完成签到 ,获得积分10
4秒前
星期五发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
猪猪hero应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
共享精神应助受伤雨南采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
南山无梅落应助李锐采纳,获得10
7秒前
ED应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
蔓越莓蛋糕应助李锐采纳,获得10
7秒前
猪猪hero应助李锐采纳,获得10
7秒前
8秒前
Strongly完成签到,获得积分10
8秒前
念姬发布了新的文献求助10
9秒前
10秒前
清茶发布了新的文献求助10
10秒前
10秒前
12秒前
Tumbleweed668发布了新的文献求助10
14秒前
pipi发布了新的文献求助10
14秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579