HTD-Net: A Deep Convolutional Neural Network for Target Detection in Hyperspectral Imagery

高光谱成像 人工智能 模式识别(心理学) 计算机科学 判别式 像素 相似性(几何) 自编码 深度学习 卷积神经网络 特征(语言学) 图像(数学) 语言学 哲学
作者
Gaigai Zhang,Shizhi Zhao,Wei Li,Qian Du,Qiong Ran,Ran Tao
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 1489-1489 被引量:110
标识
DOI:10.3390/rs12091489
摘要

In recent years, deep learning has dramatically improved the cognitive ability of the network by extracting depth features, and has been successfully applied in the field of feature extraction and classification of hyperspectral images. However, it is facing great difficulties for target detection due to extremely limited available labeled samples that are insufficient to train deep networks. In this paper, a novel target detection framework for deep learning is proposed, denoted as HTD-Net. To overcome the few-training-sample issue, the proposed framework utilizes an improved autoencoder (AE) to generate target signatures, and then finds background samples which differ significantly from target samples based on a linear prediction (LP) strategy. Then, the obtained target and background samples are used to enlarge the training set by generating pixel-pairs, which is viewed as the input of a pre-designed network architecture to learn discriminative similarity. During testing, pixel-pairs of a pixel to be labeled are constructed with both available target samples and background samples. Spectral difference between these pixel-pairs is classified by the well-trained network with results of similarity measurement. The outputs from a two-branch averaged similarity scores are combined to generate the final detection. Experimental results with several real hyperspectral data demonstrate the superiority of the proposed algorithm compared to some traditional target detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
rrr00011完成签到,获得积分10
刚刚
马梓萌完成签到,获得积分10
1秒前
1秒前
清爽的芷蕾完成签到,获得积分10
2秒前
2秒前
浮游应助式微采纳,获得20
4秒前
1020发布了新的文献求助10
4秒前
CipherSage应助rrr00011采纳,获得10
4秒前
高贵路灯完成签到,获得积分10
5秒前
田田发布了新的文献求助10
5秒前
文艺弼发布了新的文献求助10
5秒前
zz发布了新的文献求助10
5秒前
5秒前
陈琳发布了新的文献求助10
6秒前
6秒前
cqy发布了新的文献求助10
6秒前
鹤九发布了新的文献求助10
8秒前
小盆呐发布了新的文献求助10
8秒前
FashionBoy应助马梓萌采纳,获得10
9秒前
杯中冰糖茶完成签到,获得积分10
9秒前
xzy998应助暴躁土拨鼠采纳,获得10
10秒前
10秒前
bkagyin应助stoic采纳,获得10
10秒前
rrrick发布了新的文献求助10
10秒前
11秒前
轻松凝竹发布了新的文献求助10
11秒前
milv5完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
kysl发布了新的文献求助10
15秒前
在水一方应助露露采纳,获得10
16秒前
16秒前
木子发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933494
求助须知:如何正确求助?哪些是违规求助? 4201667
关于积分的说明 13054312
捐赠科研通 3975738
什么是DOI,文献DOI怎么找? 2178554
邀请新用户注册赠送积分活动 1194827
关于科研通互助平台的介绍 1106265