HTD-Net: A Deep Convolutional Neural Network for Target Detection in Hyperspectral Imagery

高光谱成像 人工智能 模式识别(心理学) 计算机科学 判别式 像素 相似性(几何) 自编码 深度学习 卷积神经网络 特征(语言学) 图像(数学) 语言学 哲学
作者
Gaigai Zhang,Shizhi Zhao,Wei Li,Qian Du,Qiong Ran,Ran Tao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:12 (9): 1489-1489 被引量:82
标识
DOI:10.3390/rs12091489
摘要

In recent years, deep learning has dramatically improved the cognitive ability of the network by extracting depth features, and has been successfully applied in the field of feature extraction and classification of hyperspectral images. However, it is facing great difficulties for target detection due to extremely limited available labeled samples that are insufficient to train deep networks. In this paper, a novel target detection framework for deep learning is proposed, denoted as HTD-Net. To overcome the few-training-sample issue, the proposed framework utilizes an improved autoencoder (AE) to generate target signatures, and then finds background samples which differ significantly from target samples based on a linear prediction (LP) strategy. Then, the obtained target and background samples are used to enlarge the training set by generating pixel-pairs, which is viewed as the input of a pre-designed network architecture to learn discriminative similarity. During testing, pixel-pairs of a pixel to be labeled are constructed with both available target samples and background samples. Spectral difference between these pixel-pairs is classified by the well-trained network with results of similarity measurement. The outputs from a two-branch averaged similarity scores are combined to generate the final detection. Experimental results with several real hyperspectral data demonstrate the superiority of the proposed algorithm compared to some traditional target detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Happy_du采纳,获得10
1秒前
一一一完成签到,获得积分10
6秒前
yuntong完成签到 ,获得积分10
6秒前
深情安青应助复杂的绮兰采纳,获得30
11秒前
124cndhaP完成签到,获得积分10
12秒前
小王爱科研完成签到 ,获得积分10
16秒前
carlitos完成签到 ,获得积分10
17秒前
无辜的蜗牛完成签到 ,获得积分10
17秒前
Olivia完成签到 ,获得积分10
19秒前
英俊的铭应助现代电灯胆采纳,获得10
21秒前
八点必起完成签到,获得积分10
23秒前
24秒前
yecheng发布了新的文献求助10
24秒前
先一完成签到 ,获得积分10
26秒前
boom发布了新的文献求助30
26秒前
26秒前
27秒前
务实锦程发布了新的文献求助10
27秒前
28秒前
Zozo完成签到,获得积分10
28秒前
欢乐的兔子完成签到,获得积分10
29秒前
俭朴的发带完成签到,获得积分10
31秒前
快乐的幼丝完成签到 ,获得积分10
33秒前
大力的冰烟完成签到,获得积分10
33秒前
prayme4发布了新的文献求助10
33秒前
93完成签到,获得积分10
33秒前
wfy1227完成签到,获得积分10
34秒前
自由的过客完成签到,获得积分10
34秒前
35秒前
35秒前
MRIFFF完成签到,获得积分10
38秒前
Chris完成签到,获得积分10
39秒前
威武鞅完成签到,获得积分10
40秒前
阿咚完成签到,获得积分0
40秒前
丘比特应助22222采纳,获得10
41秒前
42秒前
苏鱼完成签到 ,获得积分10
49秒前
49秒前
111完成签到 ,获得积分10
49秒前
49秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242047
求助须知:如何正确求助?哪些是违规求助? 2886366
关于积分的说明 8243081
捐赠科研通 2555019
什么是DOI,文献DOI怎么找? 1383192
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417