已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HTD-Net: A Deep Convolutional Neural Network for Target Detection in Hyperspectral Imagery

高光谱成像 人工智能 模式识别(心理学) 计算机科学 判别式 像素 相似性(几何) 自编码 深度学习 卷积神经网络 特征(语言学) 图像(数学) 语言学 哲学
作者
Gaigai Zhang,Shizhi Zhao,Wei Li,Qian Du,Qiong Ran,Ran Tao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:12 (9): 1489-1489 被引量:110
标识
DOI:10.3390/rs12091489
摘要

In recent years, deep learning has dramatically improved the cognitive ability of the network by extracting depth features, and has been successfully applied in the field of feature extraction and classification of hyperspectral images. However, it is facing great difficulties for target detection due to extremely limited available labeled samples that are insufficient to train deep networks. In this paper, a novel target detection framework for deep learning is proposed, denoted as HTD-Net. To overcome the few-training-sample issue, the proposed framework utilizes an improved autoencoder (AE) to generate target signatures, and then finds background samples which differ significantly from target samples based on a linear prediction (LP) strategy. Then, the obtained target and background samples are used to enlarge the training set by generating pixel-pairs, which is viewed as the input of a pre-designed network architecture to learn discriminative similarity. During testing, pixel-pairs of a pixel to be labeled are constructed with both available target samples and background samples. Spectral difference between these pixel-pairs is classified by the well-trained network with results of similarity measurement. The outputs from a two-branch averaged similarity scores are combined to generate the final detection. Experimental results with several real hyperspectral data demonstrate the superiority of the proposed algorithm compared to some traditional target detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助吕小布采纳,获得10
1秒前
2秒前
2秒前
3秒前
5秒前
怡然的飞珍完成签到,获得积分10
6秒前
科研通AI2S应助snow_dragon采纳,获得10
7秒前
科研通AI6应助tianzuo采纳,获得10
7秒前
7秒前
薪尘完成签到 ,获得积分10
8秒前
何晶晶完成签到 ,获得积分10
8秒前
一马当先霄应助ysy采纳,获得20
9秒前
不滞于物发布了新的文献求助10
9秒前
帅气的秘密完成签到 ,获得积分10
9秒前
科研通AI6应助trabbit采纳,获得10
11秒前
薪尘关注了科研通微信公众号
11秒前
曹艳龙完成签到 ,获得积分10
11秒前
12秒前
zzz完成签到,获得积分10
13秒前
小林发布了新的文献求助10
14秒前
14秒前
17秒前
20秒前
21秒前
duwurong发布了新的文献求助10
25秒前
看不了一点文献应助惜兮采纳,获得10
29秒前
30秒前
31秒前
Ma完成签到,获得积分10
31秒前
xinxin发布了新的文献求助20
32秒前
duwurong完成签到,获得积分10
32秒前
32秒前
33秒前
玉玉鼠发布了新的文献求助10
34秒前
34秒前
善学以致用应助atmzpl采纳,获得10
35秒前
慕青应助wjx采纳,获得10
35秒前
35秒前
35秒前
YZC完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407145
求助须知:如何正确求助?哪些是违规求助? 4524806
关于积分的说明 14100192
捐赠科研通 4438630
什么是DOI,文献DOI怎么找? 2436417
邀请新用户注册赠送积分活动 1428409
关于科研通互助平台的介绍 1406443