HTD-Net: A Deep Convolutional Neural Network for Target Detection in Hyperspectral Imagery

高光谱成像 人工智能 模式识别(心理学) 计算机科学 判别式 像素 相似性(几何) 自编码 深度学习 卷积神经网络 特征(语言学) 图像(数学) 语言学 哲学
作者
Gaigai Zhang,Shizhi Zhao,Wei Li,Qian Du,Qiong Ran,Ran Tao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:12 (9): 1489-1489 被引量:110
标识
DOI:10.3390/rs12091489
摘要

In recent years, deep learning has dramatically improved the cognitive ability of the network by extracting depth features, and has been successfully applied in the field of feature extraction and classification of hyperspectral images. However, it is facing great difficulties for target detection due to extremely limited available labeled samples that are insufficient to train deep networks. In this paper, a novel target detection framework for deep learning is proposed, denoted as HTD-Net. To overcome the few-training-sample issue, the proposed framework utilizes an improved autoencoder (AE) to generate target signatures, and then finds background samples which differ significantly from target samples based on a linear prediction (LP) strategy. Then, the obtained target and background samples are used to enlarge the training set by generating pixel-pairs, which is viewed as the input of a pre-designed network architecture to learn discriminative similarity. During testing, pixel-pairs of a pixel to be labeled are constructed with both available target samples and background samples. Spectral difference between these pixel-pairs is classified by the well-trained network with results of similarity measurement. The outputs from a two-branch averaged similarity scores are combined to generate the final detection. Experimental results with several real hyperspectral data demonstrate the superiority of the proposed algorithm compared to some traditional target detectors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助QG采纳,获得10
刚刚
开放的桐发布了新的文献求助10
刚刚
顾北完成签到,获得积分10
1秒前
1秒前
1秒前
哈尼呀发布了新的文献求助10
1秒前
兰兰不懒发布了新的文献求助20
1秒前
木木木又寸完成签到,获得积分10
2秒前
yhcy完成签到,获得积分10
2秒前
2秒前
2秒前
ding应助HAHA采纳,获得10
3秒前
丘比特应助HAHA采纳,获得10
3秒前
CodeCraft应助HAHA采纳,获得10
3秒前
李健应助HAHA采纳,获得20
3秒前
内向的小白菜应助HAHA采纳,获得10
3秒前
斯文败类应助safsafdfasf采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Akim应助坚定剑成采纳,获得10
3秒前
琉璃完成签到,获得积分10
4秒前
钻石好友发布了新的文献求助10
4秒前
4秒前
休亮完成签到,获得积分10
4秒前
LZX发布了新的文献求助10
5秒前
5秒前
小蘑菇应助Qyyy采纳,获得10
5秒前
5秒前
redking发布了新的文献求助10
5秒前
打打应助JINNA采纳,获得10
6秒前
Jared应助辛勤月饼采纳,获得20
6秒前
顾矜应助曾经的小松鼠采纳,获得10
7秒前
科研通AI6应助夏小胖采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
王桐完成签到,获得积分10
8秒前
朽木发布了新的文献求助10
8秒前
山猫完成签到,获得积分10
8秒前
8秒前
Ava应助陶醉的绮山采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441