纳米尺度
材料科学
纳米材料
八面体
金属有机骨架
纳米晶
纳米结构
纳米技术
形态学(生物学)
金属
化学
结晶学
地质学
晶体结构
冶金
有机化学
古生物学
吸附
作者
Peican Chen,Zeyu Tang,Zhongming Zeng,Xuefu Hu,Liangping Xiao,Yi Liu,Xudong Qian,Chunyu Deng,Ruiyun Huang,Jingzheng Zhang,Yilong Bi,Rongkun Lin,Zhou Yang,Hong‐Gang Liao,Da Zhou,Cheng Wang,Wenbin Lin
出处
期刊:Matter
[Elsevier]
日期:2020-05-18
卷期号:2 (6): 1651-1666
被引量:58
标识
DOI:10.1016/j.matt.2020.04.021
摘要
Summary Controlling morphology of nanocrystals is one of the central tasks of nanoscience. In this work, we studied nanoscale metal-organic frameworks (nMOFs) from Hf-oxo clusters and linear dicarboxylate ligands with the aid of machine-learning methods for data analysis. Ligand solubility and modulator concentration were found to quantitatively predict the growth of nMOFs with a specific morphology, such as ultrathin two-dimensional film, hexagonal nanoplate, octahedron, cuboctahedron, concave octahedron, or hollow octahedron morphology. With these insights, we use epitaxy growth sequences to design nMOFs of desirable nanostructures with enhanced substrate transport and, hence, increased activities for catalytic olefin hydrogenation. This work highlights new opportunities in using machine learning to guide morphology engineering of nMOFs and other nanomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI