分解水
量子效率
光催化
析氧
光催化分解水
制氢
氢
能量转换效率
半导体
材料科学
化学物理
化学
光电子学
物理化学
催化作用
生物化学
有机化学
电化学
电极
作者
Tsuyoshi Takata,Junzhe Jiang,Yoshihisa Sakata,Mamiko Nakabayashi,Naoya Shibata,Vikas Nandal,Kazuhiko Seki,Takashi Hisatomi,Kazunari Domen
出处
期刊:Nature
[Springer Nature]
日期:2020-05-27
卷期号:581 (7809): 411-414
被引量:1474
标识
DOI:10.1038/s41586-020-2278-9
摘要
Overall water splitting, evolving hydrogen and oxygen in a 2:1 stoichiometric ratio, using particulate photocatalysts is a potential means of achieving scalable and economically viable solar hydrogen production. To obtain high solar energy conversion efficiency, the quantum efficiency of the photocatalytic reaction must be increased over a wide range of wavelengths and semiconductors with narrow bandgaps need to be designed. However, the quantum efficiency associated with overall water splitting using existing photocatalysts is typically lower than ten per cent1,2. Thus, whether a particulate photocatalyst can enable a quantum efficiency of 100 per cent for the greatly endergonic water-splitting reaction remains an open question. Here we demonstrate overall water splitting at an external quantum efficiency of up to 96 per cent at wavelengths between 350 and 360 nanometres, which is equivalent to an internal quantum efficiency of almost unity, using a modified aluminium-doped strontium titanate (SrTiO3:Al) photocatalyst3,4. By selectively photodepositing the cocatalysts Rh/Cr2O3 (ref. 5) and CoOOH (refs. 3,6) for the hydrogen and oxygen evolution reactions, respectively, on different crystal facets of the semiconductor particles using anisotropic charge transport, the hydrogen and oxygen evolution reactions could be promoted separately. This enabled multiple consecutive forward charge transfers without backward charge transfer, reaching the upper limit of quantum efficiency for overall water splitting. Our work demonstrates the feasibility of overall water splitting free from charge recombination losses and introduces an ideal cocatalyst/photocatalyst structure for efficient water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI