Comprehensive analysis of the association between tumor-infiltrating immune cells and the prognosis of lung adenocarcinoma.

肺癌 肿瘤微环境 病理 癌症 阶段(地层学) 癌症研究 肿瘤浸润淋巴细胞 CD8型 免疫组织化学
作者
Yitong Pan,Yeqin Sha,Hongye Wang,Hao Zhuang,Xiaohan Ren,Xianji Zhu,Xiyi Wei
出处
期刊:Journal of Cancer Research and Therapeutics [BioMed Central]
卷期号:16 (2): 320-326 被引量:3
标识
DOI:10.4103/jcrt.jcrt_954_19
摘要

Context: Increasing evidence has indicated an association between immune cell infiltration in lung adenocarcinoma (LUAD) and clinical outcomes. Aims: This study aimed to investigate the effect of 22 tumor-infiltrating immune cells (TIICs) on the prognosis of patients with LUAD. Settings and Design: This was a case–control study. Materials and Methods: The CIBERSORT algorithm calculated the proportion of cases from the Cancer Genome Atlas (TCGA) cohort. Cox regression analysis evaluated the effect of TIICs on the prognosis of LUAD. The immune risk score model was constructed based on a statistical correlation. Multivariate cox regression analysis investigated independent factors. P Results: Certain immune cells had differential infiltration between normal tissues and LUAD. Univariate Cox regression analysis revealed that four immune cell types were statistically correlated with LUAD-related survival risk, and an immune risk scoring model was constructed. The results indicated that patients in the high-risk group were associated with poor outcomes. In addition, the multivariate cox analysis revealed that the immune risk scoring model was an independent factor for LUAD prognosis prediction. Ultimately, a nomogram was established to comprehensively predict the survival of LUAD patients. Conclusions: TIICs played an essential role in the prognosis of LUAD. Furthermore, the immune risk score was a poor predictive factor of LUAD, and the established model was reliable in predicting the prognosis of LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乐乐应助Ok采纳,获得10
1秒前
小江发布了新的文献求助10
1秒前
幽默服饰完成签到,获得积分10
1秒前
甜蜜的傲蕾完成签到,获得积分10
1秒前
1秒前
Supper完成签到 ,获得积分10
1秒前
充电宝应助净水涟漪采纳,获得10
2秒前
JamesPei应助迪迦采纳,获得10
2秒前
huang1499完成签到,获得积分20
2秒前
2秒前
激情的灰狼应助weiwei采纳,获得10
2秒前
11发布了新的文献求助10
2秒前
2秒前
忘我实多完成签到,获得积分10
3秒前
4秒前
inzaghi发布了新的文献求助10
4秒前
搜集达人应助11采纳,获得10
4秒前
huang1499发布了新的文献求助10
5秒前
舒适忆枫发布了新的文献求助10
5秒前
科研废材完成签到,获得积分10
5秒前
zll发布了新的文献求助10
5秒前
6秒前
6秒前
泽佑完成签到,获得积分20
6秒前
6秒前
Jasper应助LIU采纳,获得10
7秒前
7秒前
7秒前
xinxin发布了新的文献求助30
7秒前
昔我往矣发布了新的文献求助10
8秒前
liu完成签到,获得积分10
8秒前
8秒前
8秒前
smottom应助cyj采纳,获得10
8秒前
Icy发布了新的文献求助700
9秒前
量子星尘发布了新的文献求助10
9秒前
scq666666完成签到,获得积分20
10秒前
小坤同学发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647752
求助须知:如何正确求助?哪些是违规求助? 4774203
关于积分的说明 15041173
捐赠科研通 4806669
什么是DOI,文献DOI怎么找? 2570374
邀请新用户注册赠送积分活动 1527179
关于科研通互助平台的介绍 1486224