Comprehensive analysis of the association between tumor-infiltrating immune cells and the prognosis of lung adenocarcinoma.

肺癌 肿瘤微环境 病理 癌症 阶段(地层学) 癌症研究 肿瘤浸润淋巴细胞 CD8型 免疫组织化学
作者
Yitong Pan,Yeqin Sha,Hongye Wang,Hao Zhuang,Xiaohan Ren,Xianji Zhu,Xiyi Wei
出处
期刊:Journal of Cancer Research and Therapeutics [BioMed Central]
卷期号:16 (2): 320-326 被引量:3
标识
DOI:10.4103/jcrt.jcrt_954_19
摘要

Context: Increasing evidence has indicated an association between immune cell infiltration in lung adenocarcinoma (LUAD) and clinical outcomes. Aims: This study aimed to investigate the effect of 22 tumor-infiltrating immune cells (TIICs) on the prognosis of patients with LUAD. Settings and Design: This was a case–control study. Materials and Methods: The CIBERSORT algorithm calculated the proportion of cases from the Cancer Genome Atlas (TCGA) cohort. Cox regression analysis evaluated the effect of TIICs on the prognosis of LUAD. The immune risk score model was constructed based on a statistical correlation. Multivariate cox regression analysis investigated independent factors. P Results: Certain immune cells had differential infiltration between normal tissues and LUAD. Univariate Cox regression analysis revealed that four immune cell types were statistically correlated with LUAD-related survival risk, and an immune risk scoring model was constructed. The results indicated that patients in the high-risk group were associated with poor outcomes. In addition, the multivariate cox analysis revealed that the immune risk scoring model was an independent factor for LUAD prognosis prediction. Ultimately, a nomogram was established to comprehensively predict the survival of LUAD patients. Conclusions: TIICs played an essential role in the prognosis of LUAD. Furthermore, the immune risk score was a poor predictive factor of LUAD, and the established model was reliable in predicting the prognosis of LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KanmenRider发布了新的文献求助10
刚刚
1秒前
Jun发布了新的文献求助10
2秒前
2秒前
香蕉觅云应助小y采纳,获得10
5秒前
蒋羊羊完成签到 ,获得积分20
5秒前
奶茶电竞精神完成签到 ,获得积分10
5秒前
Xuan完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
落后的冬寒完成签到,获得积分10
7秒前
7秒前
优美紫槐发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
蒋鹏煊完成签到,获得积分10
10秒前
10秒前
PQ完成签到,获得积分10
11秒前
汉堡包应助哈哈镜阿姐采纳,获得10
12秒前
优美紫槐发布了新的文献求助10
14秒前
14秒前
小白发布了新的文献求助30
14秒前
丘比特应助zhao采纳,获得10
14秒前
213435完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
张雪瑞完成签到,获得积分10
17秒前
Yuanyuan发布了新的文献求助10
17秒前
18秒前
19秒前
tls完成签到,获得积分10
19秒前
书起洛阳发布了新的文献求助10
19秒前
优美紫槐发布了新的文献求助10
20秒前
fukein完成签到,获得积分10
21秒前
21秒前
22秒前
slayer完成签到 ,获得积分10
22秒前
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729178
求助须知:如何正确求助?哪些是违规求助? 5316755
关于积分的说明 15316050
捐赠科研通 4876196
什么是DOI,文献DOI怎么找? 2619280
邀请新用户注册赠送积分活动 1568848
关于科研通互助平台的介绍 1525338