Comprehensive analysis of the association between tumor-infiltrating immune cells and the prognosis of lung adenocarcinoma.

肺癌 肿瘤微环境 病理 癌症 阶段(地层学) 癌症研究 肿瘤浸润淋巴细胞 CD8型 免疫组织化学
作者
Yitong Pan,Yeqin Sha,Hongye Wang,Hao Zhuang,Xiaohan Ren,Xianji Zhu,Xiyi Wei
出处
期刊:Journal of Cancer Research and Therapeutics [BioMed Central]
卷期号:16 (2): 320-326 被引量:3
标识
DOI:10.4103/jcrt.jcrt_954_19
摘要

Context: Increasing evidence has indicated an association between immune cell infiltration in lung adenocarcinoma (LUAD) and clinical outcomes. Aims: This study aimed to investigate the effect of 22 tumor-infiltrating immune cells (TIICs) on the prognosis of patients with LUAD. Settings and Design: This was a case–control study. Materials and Methods: The CIBERSORT algorithm calculated the proportion of cases from the Cancer Genome Atlas (TCGA) cohort. Cox regression analysis evaluated the effect of TIICs on the prognosis of LUAD. The immune risk score model was constructed based on a statistical correlation. Multivariate cox regression analysis investigated independent factors. P Results: Certain immune cells had differential infiltration between normal tissues and LUAD. Univariate Cox regression analysis revealed that four immune cell types were statistically correlated with LUAD-related survival risk, and an immune risk scoring model was constructed. The results indicated that patients in the high-risk group were associated with poor outcomes. In addition, the multivariate cox analysis revealed that the immune risk scoring model was an independent factor for LUAD prognosis prediction. Ultimately, a nomogram was established to comprehensively predict the survival of LUAD patients. Conclusions: TIICs played an essential role in the prognosis of LUAD. Furthermore, the immune risk score was a poor predictive factor of LUAD, and the established model was reliable in predicting the prognosis of LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长常九久发布了新的文献求助10
1秒前
15503116087发布了新的文献求助10
1秒前
大个应助初之采纳,获得10
2秒前
te发布了新的文献求助10
2秒前
边港洋完成签到,获得积分10
4秒前
4秒前
凤羽发布了新的文献求助10
5秒前
灵巧听露发布了新的文献求助10
5秒前
可爱的函函应助猫猫无敌采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
爆米花应助刁弘睿采纳,获得10
9秒前
9秒前
9秒前
缥缈海云完成签到,获得积分10
9秒前
10秒前
斯文败类应助沙场秋点兵采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
12秒前
无辜问玉发布了新的文献求助10
12秒前
12秒前
13秒前
谨慎乐安发布了新的文献求助10
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
缥缈海云发布了新的文献求助10
16秒前
mylaodao发布了新的文献求助10
16秒前
17秒前
chen完成签到,获得积分10
18秒前
拾贰月发布了新的文献求助10
18秒前
俊杰完成签到,获得积分10
19秒前
阿菜完成签到,获得积分10
19秒前
wanghao完成签到,获得积分20
19秒前
善学以致用应助songjiatian采纳,获得10
20秒前
21秒前
21秒前
善学以致用应助追忆淮采纳,获得10
22秒前
Hello应助靓丽凝海采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425