亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive analysis of the association between tumor-infiltrating immune cells and the prognosis of lung adenocarcinoma.

肺癌 肿瘤微环境 病理 癌症 阶段(地层学) 癌症研究 肿瘤浸润淋巴细胞 CD8型 免疫组织化学
作者
Yitong Pan,Yeqin Sha,Hongye Wang,Hao Zhuang,Xiaohan Ren,Xianji Zhu,Xiyi Wei
出处
期刊:Journal of Cancer Research and Therapeutics [BioMed Central]
卷期号:16 (2): 320-326 被引量:3
标识
DOI:10.4103/jcrt.jcrt_954_19
摘要

Context: Increasing evidence has indicated an association between immune cell infiltration in lung adenocarcinoma (LUAD) and clinical outcomes. Aims: This study aimed to investigate the effect of 22 tumor-infiltrating immune cells (TIICs) on the prognosis of patients with LUAD. Settings and Design: This was a case–control study. Materials and Methods: The CIBERSORT algorithm calculated the proportion of cases from the Cancer Genome Atlas (TCGA) cohort. Cox regression analysis evaluated the effect of TIICs on the prognosis of LUAD. The immune risk score model was constructed based on a statistical correlation. Multivariate cox regression analysis investigated independent factors. P Results: Certain immune cells had differential infiltration between normal tissues and LUAD. Univariate Cox regression analysis revealed that four immune cell types were statistically correlated with LUAD-related survival risk, and an immune risk scoring model was constructed. The results indicated that patients in the high-risk group were associated with poor outcomes. In addition, the multivariate cox analysis revealed that the immune risk scoring model was an independent factor for LUAD prognosis prediction. Ultimately, a nomogram was established to comprehensively predict the survival of LUAD patients. Conclusions: TIICs played an essential role in the prognosis of LUAD. Furthermore, the immune risk score was a poor predictive factor of LUAD, and the established model was reliable in predicting the prognosis of LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
雷金炜发布了新的文献求助10
9秒前
Grace完成签到 ,获得积分10
14秒前
雷金炜完成签到,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
斯文败类应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
桐桐应助白华苍松采纳,获得10
1分钟前
jiao完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
白华苍松完成签到,获得积分10
2分钟前
3分钟前
kiko发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
cheers发布了新的文献求助10
4分钟前
脑洞疼应助cheers采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
4分钟前
NexusExplorer应助李小猫采纳,获得10
4分钟前
李小猫完成签到,获得积分10
5分钟前
5分钟前
传奇3应助uo采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706456
求助须知:如何正确求助?哪些是违规求助? 5173834
关于积分的说明 15246926
捐赠科研通 4859958
什么是DOI,文献DOI怎么找? 2608291
邀请新用户注册赠送积分活动 1559198
关于科研通互助平台的介绍 1516964