CNN–MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites

计算机科学 卷积神经网络 网络钓鱼 主管(地质) 人工神经网络 人工智能 机器学习 万维网 互联网 地质学 地貌学
作者
Xi Xiao,Dianyan Zhang,Guangwu Hu,Yong Jiang,Shu‐Tao Xia
出处
期刊:Neural Networks [Elsevier BV]
卷期号:125: 303-312 被引量:100
标识
DOI:10.1016/j.neunet.2020.02.013
摘要

Increasing phishing sites today have posed great threats due to their terribly imperceptible hazard. They expect users to mistake them as legitimate ones so as to steal user information and properties without notice. The conventional way to mitigate such threats is to set up blacklists. However, it cannot detect one-time Uniform Resource Locators (URL) that have not appeared in the list. As an improvement, deep learning methods are applied to increase detection accuracy and reduce the misjudgment ratio. However, some of them only focus on the characters in URLs but ignore the relationships between characters, which results in that the detection accuracy still needs to be improved. Considering the multi-head self-attention (MHSA) can learn the inner structures of URLs, in this paper, we propose CNN-MHSA, a Convolutional Neural Network (CNN) and the MHSA combined approach for highly-precise. To achieve this goal, CNN-MHSA first takes a URL string as the input data and feeds it into a mature CNN model so as to extract its features. In the meanwhile, MHSA is applied to exploit characters' relationships in the URL so as to calculate the corresponding weights for the CNN learned features. Finally, CNN-MHSA can produce highly-precise detection result for a URL object by integrating its features and their weights. The thorough experiments on a dataset collected in real environment demonstrate that our method achieves 99.84% accuracy, which outperforms the classical method CNN-LSTM and at least 6.25% higher than other similar methods on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金金肖完成签到,获得积分10
刚刚
搜集达人应助吴彦祖采纳,获得10
1秒前
1秒前
bb发布了新的文献求助10
1秒前
火星上飞丹完成签到,获得积分20
1秒前
5秒前
Lemonal发布了新的文献求助10
5秒前
九九完成签到 ,获得积分10
5秒前
金金肖发布了新的文献求助10
7秒前
7秒前
8秒前
小兔子捣药完成签到,获得积分10
8秒前
avaig发布了新的文献求助10
10秒前
小熊星星发布了新的文献求助30
12秒前
YFW完成签到,获得积分10
12秒前
12秒前
温酒随行发布了新的文献求助30
12秒前
13秒前
14秒前
15秒前
16秒前
Jiang发布了新的文献求助20
16秒前
檀宇亭完成签到,获得积分10
17秒前
Lemonal完成签到,获得积分10
17秒前
程程发布了新的文献求助10
17秒前
快点毕业发布了新的文献求助10
18秒前
爆米花应助红岸采纳,获得10
18秒前
18秒前
fafafa发布了新的文献求助10
19秒前
YXF发布了新的文献求助10
19秒前
失眠夏山发布了新的文献求助10
20秒前
MOMO完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
jerry发布了新的文献求助10
22秒前
赵小天完成签到,获得积分10
23秒前
深情安青应助fafafa采纳,获得10
25秒前
852应助YXF采纳,获得10
25秒前
CAT发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916