CNN–MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites

计算机科学 卷积神经网络 网络钓鱼 主管(地质) 人工神经网络 人工智能 机器学习 万维网 互联网 地貌学 地质学
作者
Xi Xiao,Dianyan Zhang,Guangwu Hu,Yong Jiang,Shu‐Tao Xia
出处
期刊:Neural Networks [Elsevier]
卷期号:125: 303-312 被引量:91
标识
DOI:10.1016/j.neunet.2020.02.013
摘要

Increasing phishing sites today have posed great threats due to their terribly imperceptible hazard. They expect users to mistake them as legitimate ones so as to steal user information and properties without notice. The conventional way to mitigate such threats is to set up blacklists. However, it cannot detect one-time Uniform Resource Locators (URL) that have not appeared in the list. As an improvement, deep learning methods are applied to increase detection accuracy and reduce the misjudgment ratio. However, some of them only focus on the characters in URLs but ignore the relationships between characters, which results in that the detection accuracy still needs to be improved. Considering the multi-head self-attention (MHSA) can learn the inner structures of URLs, in this paper, we propose CNN-MHSA, a Convolutional Neural Network (CNN) and the MHSA combined approach for highly-precise. To achieve this goal, CNN-MHSA first takes a URL string as the input data and feeds it into a mature CNN model so as to extract its features. In the meanwhile, MHSA is applied to exploit characters' relationships in the URL so as to calculate the corresponding weights for the CNN learned features. Finally, CNN-MHSA can produce highly-precise detection result for a URL object by integrating its features and their weights. The thorough experiments on a dataset collected in real environment demonstrate that our method achieves 99.84% accuracy, which outperforms the classical method CNN-LSTM and at least 6.25% higher than other similar methods on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QxQMDR完成签到,获得积分10
1秒前
111完成签到,获得积分10
5秒前
标致山兰完成签到,获得积分20
8秒前
111发布了新的文献求助10
9秒前
wxl完成签到,获得积分20
10秒前
10秒前
11秒前
wxl发布了新的文献求助10
13秒前
辰扞发布了新的文献求助10
16秒前
badyoungboy关注了科研通微信公众号
16秒前
16秒前
青檀完成签到,获得积分20
17秒前
19秒前
青檀发布了新的文献求助10
20秒前
22秒前
小二郎应助wxl采纳,获得10
22秒前
寻雾启事完成签到,获得积分10
22秒前
24秒前
乱醉应助忧郁绝音采纳,获得10
25秒前
ccc完成签到,获得积分20
26秒前
Pxn1bplus发布了新的文献求助10
27秒前
29秒前
科研通AI2S应助浚稚采纳,获得10
30秒前
Endlessway应助浚稚采纳,获得20
30秒前
鲤鱼访天应助aqing采纳,获得30
30秒前
11发布了新的文献求助10
30秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
33秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
33秒前
monere应助慈祥的翠桃采纳,获得10
33秒前
CodeCraft应助慈祥的翠桃采纳,获得10
33秒前
深情安青应助慈祥的翠桃采纳,获得10
33秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
33秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
33秒前
Hello应助123456采纳,获得10
33秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
33秒前
monere应助慈祥的翠桃采纳,获得10
33秒前
赘婿应助慈祥的翠桃采纳,获得10
33秒前
尹静涵完成签到 ,获得积分10
33秒前
Pxn1bplus完成签到,获得积分10
33秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240875
求助须知:如何正确求助?哪些是违规求助? 2885573
关于积分的说明 8239275
捐赠科研通 2554021
什么是DOI,文献DOI怎么找? 1382130
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097