Synthesis of g-C3N4 Derived from Oxamide and Urea in Molten Salt and Its Visible Light Photocatalytic Activity

光催化 草酰胺 X射线光电子能谱 石墨氮化碳 熔盐 材料科学 漫反射红外傅里叶变换 尿素 核化学 化学 分析化学(期刊) 化学工程 无机化学 有机化学 催化作用 高分子化学 工程类
作者
Sakakibara Koya,Hideyuki Katsumata,Ikki Tateishi,Mai Furukawa,Satoshi Kaneco
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (68): 3673-3673
标识
DOI:10.1149/ma2020-02683673mtgabs
摘要

INTRODUCTION Photocatalysts have received much attention as a potential solution to the worldwide energy shortage and counteracting environmental disruption [1]. Graphitic carbon nitride (g-C 3 N 4 ) is considered as a potential photocatalyst for treating pollutants under visible light irradiation, and has the advantages of high efficiency, low cost, chemical stability, and narrow bandgap (~ 2.7 eV). However, the high recombination of photogenerated electron-hole pairs limits the photocatalytic activity of graphitic carbon nitride [2]. Tang et al. reported improvement of separation efficiency of photogenerated electron-hole pairs in g-C 3 N 4 by adding oxamide to urea, which is a raw material of g-C 3 N 4 [3]. It has been also shown that g-C 3 N 4 synthesized through the molten salt process improves photocatalytic activity and enhances the hydrogen evolution reaction [4]. In this study, a novel g-C 3 N 4 from urea was synthesized by combining oxamide addition and molten salt synthetic process. The synthesized samples were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), nitrogen-sorption, UV-Vis diffuse reflectance spectra (DRS), photoluminescence spectra (PL), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photocatalytic activities of these samples were evaluated by bisphenol A (BPA) degradation under visible light irradiation, and the BPA concentrations ware deternined by HPLC. EXPERIMENTAL Preparation of photocatalysts Samples of g-C 3 N 4 were prepared by the thermal polymerization of urea and oxamide in atmosphere in molten salt (MOCN). The preparation of MOCN was as follow: 10.0 g urea, 0.3 g oxamide, 10 mL ethanol, 20 mL DI water were stirred and heated with a hot stirrer to uniformly disperse the oxamide. The mixture was put into a muffule furnace and heated to 500 for 1 h. The resulting powder was added to the mixture of KCl and LiCl (6 g). The mixed powder was further calcined at 550° C for 2 h, and then the product was washed several times with hot DI water, leading to MOCN. Photodegradation of BPA For evaluation of photocatalytic activity, photpdegradation of BPA was examined. 30 mg of photocatalyst was added into 5 ppm BPA solution (30 mL). Then, the solution was stirred until reaching the adsorption-desorption equilibrium using magnetic stirrer. A Xe lamp (420 800 nm) was applied as light source. The irradiation time was 75 min. After irradiation, the degradation percentage of BPA was determined by using HPLC. RESULTS AND DISCUSSION Photodegradation of BPA The pure g-C 3 N 4 and MOCN decomposed 34.3 % and 95.3 % of BPA under visible light after 75 min, respectively. MOCN with 8 g of molten salt had highest photocatalytic activity for the degradation of BPA under visible light. As a result of 5 cycle BPA degradation experiments using MOCN, the degradation rate of BPA was kept at 90%, which showed high stability of MOCN. Characteruzation The following instruments were used. XRD FT-IR XPS BET measurements DRS PL SEM TEM HPLC CONCLUSION g-C 3 N 4 was successfully prepared by facile two-step calcination using oxamide and urea as starting materials in molten salt (mixture of KCl and LiCl) (MOCN). MOCN showed much higher photocatalytic activity for the degradation of BPA under visible light irradiation than that of pristine g-C 3 N 4 . Furthermore, MOCN maintained high photocatalytic performance after 5 times cycle experiments. REFERENCES [1] H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24 (2012) 229-251. [2] X. Liang, G. Wang, T. Huo, X. Dong, G.Wang, H. Ma, H. Liang, X. Zhang, Catal. Commun. 123 (2019) 44-48. [3] H. Tang, R. Wang, C. Zhao, Z. Chen, X. Yang, D. Bukhvalov, Z, Lin, Q. Liu, Chem. Eng. 374 (2019) 1064-1075. [4] H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Appl. Catal. B 203 (2017) 300-313.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限紫菜发布了新的文献求助10
刚刚
wanci应助河豚来辽采纳,获得10
刚刚
高大的立果完成签到,获得积分10
刚刚
lgq12697完成签到,获得积分0
1秒前
1秒前
yuky完成签到,获得积分10
2秒前
3秒前
3秒前
爆米花应助予初采纳,获得10
4秒前
4秒前
Hello应助1111采纳,获得10
5秒前
5秒前
腾腾腾发布了新的文献求助10
5秒前
梨梨完成签到,获得积分20
6秒前
6秒前
萌帆星完成签到 ,获得积分10
7秒前
杨杨001完成签到,获得积分10
7秒前
小孟完成签到,获得积分10
7秒前
Ting发布了新的文献求助10
7秒前
8秒前
9秒前
椿萱并茂发布了新的文献求助10
9秒前
万能图书馆应助刘shuchang采纳,获得10
9秒前
9秒前
9秒前
ding应助不想学习采纳,获得10
11秒前
科研通AI6应助能干的盼兰采纳,获得10
11秒前
12秒前
nnnnn发布了新的文献求助10
12秒前
Alma完成签到,获得积分10
12秒前
雨歌发布了新的文献求助10
13秒前
13秒前
13秒前
慢慢完成签到,获得积分10
14秒前
Criminology34应助活力的思雁采纳,获得10
14秒前
14秒前
生动依凝完成签到,获得积分10
14秒前
一方通行发布了新的文献求助60
14秒前
愚研丁真发布了新的文献求助10
14秒前
坤坤发布了新的文献求助50
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Weekly Somapacitan is Effective and Well-Tolerated in Children with Idiopathic Short Stature: Randomised Phase 3 Trial 600
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016348
求助须知:如何正确求助?哪些是违规求助? 4256394
关于积分的说明 13264643
捐赠科研通 4060429
什么是DOI,文献DOI怎么找? 2220848
邀请新用户注册赠送积分活动 1230087
关于科研通互助平台的介绍 1152714