Multi-scale and multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm

医学 列线图 肝细胞癌 肝十二指肠韧带 放射科 神经组阅片室 逻辑回归 队列 磁共振成像 核医学 内科学 外科 切除术 神经学 精神科
作者
Huanhuan Chong,Li Yang,Ruofan Sheng,Yangli Yu,Dijia Wu,Shengxiang Rao,Chun Yang,Mengsu Zeng
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (7): 4824-4838 被引量:191
标识
DOI:10.1007/s00330-020-07601-2
摘要

Abstract Objectives To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Methods Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium–enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models. Results Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861–0.979) using random forest and 0.879 (95% CI: 0.820–0.938) using logistic regression analysis in validation cohort ( n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months ( p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538–0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction. Conclusions Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm. Key Points • The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvbowen发布了新的文献求助10
1秒前
1秒前
人123456完成签到,获得积分10
1秒前
111完成签到,获得积分10
1秒前
橙子完成签到,获得积分10
1秒前
齐朕完成签到,获得积分10
2秒前
2秒前
科研通AI6应助小语丝采纳,获得10
2秒前
早早完成签到,获得积分20
3秒前
Twonej应助王木木采纳,获得30
3秒前
Jasper应助damang采纳,获得10
3秒前
3秒前
3秒前
Mortimer完成签到,获得积分10
3秒前
4秒前
freebird应助zp4采纳,获得10
4秒前
huiee发布了新的文献求助10
4秒前
4秒前
星奕完成签到 ,获得积分10
4秒前
5秒前
lvbowen完成签到,获得积分10
6秒前
GRJ发布了新的文献求助30
6秒前
搜集达人应助夕荀采纳,获得10
6秒前
gaochanglu发布了新的文献求助10
6秒前
6秒前
所所应助jassin采纳,获得10
6秒前
陈涛完成签到,获得积分10
6秒前
温婉的老五完成签到,获得积分20
7秒前
Wu关注了科研通微信公众号
7秒前
yangqi完成签到,获得积分10
7秒前
ww发布了新的文献求助10
8秒前
echo完成签到,获得积分10
8秒前
欢喜完成签到 ,获得积分10
9秒前
luo发布了新的文献求助10
9秒前
xxaqs发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Jinna706完成签到,获得积分10
10秒前
10秒前
iNk应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271