材料科学
生物相容性
离体
体内
荧光
纳米材料
石墨烯
量子点
荧光寿命成像显微镜
生物相容性材料
临床前影像学
纳米技术
生物医学工程
光学
医学
生物
物理
生物技术
冶金
作者
Md. Tanvir Hasan,Roberto González-Rodríguez,Ching‐Wei Lin,Elizabeth A. Campbell,Satvik Vasireddy,Uyanga Tsedev,Angela M. Belcher,Anton V. Naumov
标识
DOI:10.1002/adom.202000897
摘要
Abstract Near‐infrared (NIR) emitting biocompatible nanomaterials are desired in biotechnology as higher penetration depth fluorescence imaging probes. In this work, novel NIR‐emissive Nd 3+ ‐doped or Tm 3+ ‐doped biocompatible graphene quantum dots (GQDs) are developed via scalable, single‐step bottom‐up synthesis. Water‐soluble Nd‐GQDs/Tm‐GQDs with average diameters of 5.6–8.2 nm possess crystalline graphene lattice with < 1 atomic percent of Nd/Tm and exhibit NIR fluorescence at ≈ 1060/ ≈ 925 nm attributed to the intrinsic transitions of Nd 3+ /Tm 3+ . High biocompatibility with > 80% cell viability at 1 mg mL −1 for Nd‐GQDs and 0.25 mg mL −1 for Tm‐GQDs makes them well‐suited for bioimaging. In vitro, both GQD types exhibit efficient internalization with their intracellular emission maximized at 6 h. The pH‐dependence of this emission can serve as plethora of diagnostic applications. GQDs enable in vivo NIR imaging in live sedated NCr nude mice with IV administration: their NIR emission maximized at 6 h post‐injection is primarily detected in intestine, kidneys, liver, and spleen, however, diminishing to none at 48 h. Ex vivo organ/slice imaging shows significant Tm‐GQD fluorescence signatures in the aforementioned organs/slices. This capability of NIR fluorescence imaging in cells, tissues, and real‐time detection in live animals makes biocompatible rare‐earth metal‐doped GQDs an attractive new candidate for in vitro/in vivo/ex vivo theranostics.
科研通智能强力驱动
Strongly Powered by AbleSci AI