Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction

自编码 成对比较 计算机科学 编码 图形 特征(语言学) 节点(物理) 人工智能 卷积神经网络 模式识别(心理学) 代表(政治) 理论计算机科学 深度学习 生物 基因 遗传学 政治 语言学 工程类 结构工程 哲学 政治学 法学
作者
Nan Sheng,Hui Cui,Tiangang Zhang,Ping Xuan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:35
标识
DOI:10.1093/bib/bbaa067
摘要

Abstract As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA–disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA–disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA–disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA–disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA–disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助蒲云海采纳,获得30
3秒前
dtf发布了新的文献求助10
3秒前
小篮子完成签到,获得积分10
4秒前
冷静访梦完成签到,获得积分10
5秒前
FashionBoy应助肖肖恩采纳,获得10
6秒前
焦糖完成签到,获得积分10
6秒前
jianhan关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助150
8秒前
抹茶麻薯巧克力完成签到,获得积分10
11秒前
13秒前
啦啦啦完成签到,获得积分10
15秒前
15秒前
小马甲应助友好真采纳,获得10
15秒前
ding应助加快步伐采纳,获得10
16秒前
meng17应助Vicky采纳,获得20
17秒前
17秒前
Owen应助标致耷采纳,获得10
18秒前
18秒前
19秒前
dpk发布了新的文献求助10
19秒前
July发布了新的文献求助10
20秒前
852应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
20秒前
情怀应助科研通管家采纳,获得10
20秒前
Allonz发布了新的文献求助10
21秒前
yy完成签到,获得积分10
22秒前
aaaa完成签到,获得积分10
23秒前
23秒前
in2you发布了新的文献求助10
23秒前
23秒前
guojingjing发布了新的文献求助10
24秒前
青柠发布了新的文献求助10
25秒前
26秒前
顾惊蛰发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309