Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction

自编码 成对比较 计算机科学 编码 图形 特征(语言学) 节点(物理) 人工智能 卷积神经网络 模式识别(心理学) 代表(政治) 理论计算机科学 深度学习 生物 基因 遗传学 政治 语言学 工程类 结构工程 哲学 政治学 法学
作者
Nan Sheng,Hui Cui,Tiangang Zhang,Ping Xuan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:35
标识
DOI:10.1093/bib/bbaa067
摘要

Abstract As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA–disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA–disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA–disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA–disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA–disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助王三采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
xjcy应助独角兽采纳,获得10
3秒前
xjcy应助独角兽采纳,获得10
3秒前
3秒前
小酒窝周周完成签到 ,获得积分10
4秒前
iveuplife完成签到,获得积分20
4秒前
Yange完成签到,获得积分10
5秒前
雪飞完成签到,获得积分10
5秒前
FashionBoy应助levy采纳,获得10
5秒前
文静的刺猬完成签到,获得积分10
6秒前
高挑的宛海完成签到,获得积分20
6秒前
11发布了新的文献求助10
6秒前
huang完成签到,获得积分10
7秒前
Orange应助失重心跳采纳,获得10
7秒前
zmnzmnzmn完成签到,获得积分10
7秒前
bkagyin应助春风嬉蝉采纳,获得10
7秒前
莹莹完成签到,获得积分10
7秒前
王德发3号发布了新的文献求助10
7秒前
7秒前
Timberlake完成签到,获得积分10
8秒前
####发布了新的文献求助10
8秒前
一切都会好起来的完成签到,获得积分10
9秒前
9秒前
9秒前
小蘑菇应助鳄鱼队长采纳,获得30
9秒前
linxi完成签到,获得积分10
9秒前
9秒前
10秒前
FashionBoy应助11采纳,获得10
10秒前
10秒前
11秒前
orixero应助时光友岸采纳,获得10
12秒前
12秒前
研友_5Z4ZA5发布了新的文献求助10
12秒前
北西东发布了新的文献求助10
12秒前
LEO完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227