Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction

自编码 成对比较 计算机科学 编码 图形 特征(语言学) 节点(物理) 人工智能 卷积神经网络 模式识别(心理学) 代表(政治) 理论计算机科学 深度学习 生物 基因 遗传学 政治 语言学 工程类 结构工程 哲学 政治学 法学
作者
Nan Sheng,Hui Cui,Tiangang Zhang,Ping Xuan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:35
标识
DOI:10.1093/bib/bbaa067
摘要

Abstract As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA–disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA–disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA–disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA–disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA–disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助顺心映之采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
摇摆小狗发布了新的文献求助10
2秒前
谨慎鹰发布了新的文献求助10
2秒前
3秒前
柯擎汉发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
闪电完成签到,获得积分10
5秒前
故酒应助Jojo采纳,获得10
7秒前
昵称完成签到,获得积分10
7秒前
8秒前
梦丽有人发布了新的文献求助10
8秒前
11秒前
Twonej应助cl采纳,获得30
11秒前
JamesPei应助柯擎汉采纳,获得10
12秒前
脑洞疼应助张凤采纳,获得10
13秒前
hay发布了新的文献求助10
13秒前
13秒前
肉丸完成签到 ,获得积分10
14秒前
14秒前
teeth发布了新的文献求助10
15秒前
16秒前
hydrogen完成签到,获得积分10
17秒前
kun发布了新的文献求助10
17秒前
17秒前
17秒前
FashionBoy应助yana采纳,获得10
17秒前
xulin完成签到,获得积分10
18秒前
eternity136发布了新的文献求助10
20秒前
甜甜的枫发布了新的文献求助10
21秒前
扎根发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
上官若男应助小李子采纳,获得10
23秒前
23秒前
23秒前
24秒前
lkk完成签到,获得积分10
24秒前
25秒前
mjh完成签到,获得积分10
25秒前
飞飞翔的小马完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711883
求助须知:如何正确求助?哪些是违规求助? 5206296
关于积分的说明 15265590
捐赠科研通 4864003
什么是DOI,文献DOI怎么找? 2611125
邀请新用户注册赠送积分活动 1561399
关于科研通互助平台的介绍 1518729