Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction

自编码 成对比较 计算机科学 编码 图形 特征(语言学) 节点(物理) 人工智能 卷积神经网络 模式识别(心理学) 代表(政治) 理论计算机科学 深度学习 生物 基因 遗传学 政治 语言学 工程类 结构工程 哲学 政治学 法学
作者
Nan Sheng,Hui Cui,Tiangang Zhang,Ping Xuan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:35
标识
DOI:10.1093/bib/bbaa067
摘要

Abstract As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA–disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA–disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA–disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA–disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA–disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研小狗采纳,获得10
刚刚
顾矜应助Liuxinyan采纳,获得10
1秒前
sztao完成签到,获得积分10
2秒前
平常的迎夏完成签到,获得积分10
2秒前
2秒前
2秒前
英俊的铭应助摸水的鱼采纳,获得10
3秒前
充电宝应助欣喜的秋蝶采纳,获得10
3秒前
深情安青应助时光采纳,获得10
3秒前
luswien发布了新的文献求助10
3秒前
sztao发布了新的文献求助10
4秒前
ysy完成签到,获得积分10
4秒前
大模型应助陈帅采纳,获得10
4秒前
6秒前
yjjin应助MI采纳,获得10
6秒前
T_KYG发布了新的文献求助10
7秒前
123456qqqq发布了新的文献求助10
7秒前
自然蘑菇完成签到,获得积分20
7秒前
8秒前
Lillian完成签到,获得积分10
8秒前
257发布了新的文献求助10
8秒前
Viki发布了新的文献求助10
8秒前
8秒前
9秒前
麦候完成签到,获得积分10
9秒前
雨眠发布了新的文献求助10
11秒前
11秒前
11秒前
Kraghc发布了新的文献求助10
12秒前
12秒前
Criminology34应助干净寻冬采纳,获得10
13秒前
科研小狗发布了新的文献求助10
14秒前
smartegg完成签到,获得积分10
14秒前
汉堡包应助爱橙色的阿七采纳,获得10
14秒前
复杂千亦发布了新的文献求助10
15秒前
16秒前
潘尼完成签到,获得积分10
16秒前
T_KYG完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314