Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction

自编码 成对比较 计算机科学 编码 图形 特征(语言学) 节点(物理) 人工智能 卷积神经网络 模式识别(心理学) 代表(政治) 理论计算机科学 深度学习 生物 基因 遗传学 政治 语言学 工程类 结构工程 哲学 政治学 法学
作者
Nan Sheng,Hui Cui,Tiangang Zhang,Ping Xuan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:35
标识
DOI:10.1093/bib/bbaa067
摘要

Abstract As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA–disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA–disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA–disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA–disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA–disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆小豆发布了新的文献求助10
刚刚
LL发布了新的文献求助10
刚刚
小二郎应助鲤鱼一一采纳,获得10
刚刚
LQ发布了新的文献求助20
1秒前
2秒前
慎独完成签到,获得积分10
2秒前
3秒前
GGbong完成签到,获得积分10
3秒前
3秒前
机灵晓刚完成签到 ,获得积分10
3秒前
he完成签到,获得积分10
3秒前
Lucas应助tiger采纳,获得10
4秒前
cuihf06完成签到,获得积分10
5秒前
5秒前
来碗孟婆汤完成签到,获得积分10
6秒前
6秒前
jx完成签到 ,获得积分10
6秒前
毕业比耶完成签到,获得积分10
6秒前
6秒前
Jasper应助wf采纳,获得10
8秒前
HoaGy发布了新的文献求助10
8秒前
chenting发布了新的文献求助10
9秒前
贪玩的野狼完成签到 ,获得积分10
9秒前
粗犷的之柔完成签到,获得积分10
10秒前
childheart完成签到,获得积分10
10秒前
10秒前
王羿曈完成签到,获得积分20
10秒前
香蕉觅云应助lfg采纳,获得10
12秒前
childheart发布了新的文献求助20
13秒前
13秒前
13秒前
852应助开心就吃猕猴桃采纳,获得10
14秒前
14秒前
傻傻的孤云完成签到,获得积分10
14秒前
14秒前
15秒前
灵泽发布了新的文献求助10
15秒前
毕蓝血完成签到 ,获得积分10
16秒前
猪儿虫儿完成签到 ,获得积分20
16秒前
凯七完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460704
求助须知:如何正确求助?哪些是违规求助? 3054721
关于积分的说明 9044158
捐赠科研通 2744454
什么是DOI,文献DOI怎么找? 1505542
科研通“疑难数据库(出版商)”最低求助积分说明 695737
邀请新用户注册赠送积分活动 695046