Perils and pitfalls of mixed-effects regression models in biology

可靠性 计算机科学 数据科学 统计模型 机器学习 计量经济学 管理科学 人工智能 风险分析(工程) 认识论 数学 医学 哲学 经济
作者
Matthew J. Silk,Xavier A. Harrison,David J. Hodgson
出处
期刊:PeerJ [PeerJ]
卷期号:8: e9522-e9522 被引量:61
标识
DOI:10.7717/peerj.9522
摘要

Biological systems, at all scales of organisation from nucleic acids to ecosystems, are inherently complex and variable. Biologists therefore use statistical analyses to detect signal among this systemic noise. Statistical models infer trends, find functional relationships and detect differences that exist among groups or are caused by experimental manipulations. They also use statistical relationships to help predict uncertain futures. All branches of the biological sciences now embrace the possibilities of mixed-effects modelling and its flexible toolkit for partitioning noise and signal. The mixed-effects model is not, however, a panacea for poor experimental design, and should be used with caution when inferring or deducing the importance of both fixed and random effects. Here we describe a selection of the perils and pitfalls that are widespread in the biological literature, but can be avoided by careful reflection, modelling and model-checking. We focus on situations where incautious modelling risks exposure to these pitfalls and the drawing of incorrect conclusions. Our stance is that statements of significance, information content or credibility all have their place in biological research, as long as these statements are cautious and well-informed by checks on the validity of assumptions. Our intention is to reveal potential perils and pitfalls in mixed model estimation so that researchers can use these powerful approaches with greater awareness and confidence. Our examples are ecological, but translate easily to all branches of biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助航_123采纳,获得10
1秒前
盛yyyy完成签到,获得积分10
1秒前
领导范儿应助Shirly采纳,获得10
1秒前
NexusExplorer应助letian采纳,获得10
2秒前
2秒前
5秒前
喜乐完成签到 ,获得积分10
6秒前
6秒前
jianjiao完成签到,获得积分10
6秒前
7秒前
7秒前
duts完成签到 ,获得积分10
7秒前
Shirly完成签到,获得积分10
8秒前
9秒前
小景007发布了新的文献求助10
9秒前
尊敬的起眸完成签到,获得积分10
10秒前
Dd发布了新的文献求助10
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
Zhijiuhenpi发布了新的文献求助30
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
852应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
12秒前
zhujun完成签到,获得积分20
12秒前
马德里完成签到 ,获得积分10
12秒前
YifanWang应助一个小胖子采纳,获得10
12秒前
PEI发布了新的文献求助10
13秒前
支以冬发布了新的文献求助10
13秒前
14秒前
18秒前
万能图书馆应助gxmu6322采纳,获得10
19秒前
20秒前
笨笨青筠发布了新的文献求助10
21秒前
支以冬完成签到,获得积分20
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266206
求助须知:如何正确求助?哪些是违规求助? 2906003
关于积分的说明 8336431
捐赠科研通 2576383
什么是DOI,文献DOI怎么找? 1400493
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661