PolSAR Image Classification Based on Low-Frequency and Contour Subbands-Driven Polarimetric SENet

计算机科学 模式识别(心理学) 人工智能 旋光法 特征(语言学) 卷积神经网络 特征提取 上下文图像分类 频域 领域(数学分析) 边界(拓扑) 图像(数学) 计算机视觉 数学 物理 语言学 光学 数学分析 哲学 散射
作者
Rui Qin,Xiongjun Fu,Ping Lang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 4760-4773 被引量:22
标识
DOI:10.1109/jstars.2020.3015520
摘要

In order to more efficiently mine the features of PolSAR images and build a more suitable classification model that combines the features of the polarimetric domain and the spatial domain, this article proposes a PolSAR image classification method, called low-frequency and contour subbands-driven polarimetric squeeze-and-excitation network (LC-PSENet). First, the proposed LC-PSENet introduces the nonsubsampled Laplacian pyramid to decompose polarimetric feature maps, so as to construct a multichannel PolSAR image based on the low-frequency subband and contour subband of these maps. It guides the network to perform feature mining and selection in the subbands of each polarimetric map in a supervised way, automatically balancing the contributions of polarimetric features and their subbands and the influence of interference information such as noise, making the network learning more efficient. Second, the method introduces squeeze-and-excitation operation in the convolutional neural network (CNN) to perform channel modeling on the polarimetric feature subbands. It strengthens the learning of the contributions of local maps of the polarimetric features and subbands, thereby, effectively combining the features of the polarimetric domain and the spatial domain. Experiments on the datasets of Flevoland, The Netherlands, and Oberpfaffenhofen show that the proposed LC-PSENet achieves overall accuracies of 99.66%, 99.72%, and 95.89%, which are 0.87%, 0.27%, and 1.42% higher than the baseline CNN, respectively. The isolated points in the classification results are obviously reduced, and the distinction between boundary and nonboundary is more clear and delicate. Also, the method performs better than many current state-of-the-art methods in terms of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助dudu采纳,获得30
1秒前
火星上秋尽完成签到,获得积分10
2秒前
2秒前
2秒前
太阳发布了新的文献求助10
2秒前
gggggggbao完成签到,获得积分10
3秒前
加贺发布了新的文献求助10
3秒前
4秒前
旷意发布了新的文献求助10
4秒前
Lexine发布了新的文献求助10
5秒前
5秒前
jeil完成签到,获得积分10
6秒前
鱼鱼子999发布了新的文献求助10
6秒前
AamirAli完成签到,获得积分10
7秒前
在水一方应助太阳采纳,获得10
7秒前
田様应助gggggggbao采纳,获得10
7秒前
8秒前
简单的鲜花完成签到,获得积分10
8秒前
科研通AI6应助lily采纳,获得10
8秒前
杨锐完成签到,获得积分10
9秒前
风趣从霜完成签到,获得积分10
9秒前
从容的完成签到 ,获得积分10
10秒前
11秒前
11秒前
ssy发布了新的文献求助10
11秒前
感动城完成签到,获得积分10
12秒前
儒雅的小懒虫完成签到 ,获得积分10
14秒前
mika910完成签到 ,获得积分10
14秒前
14秒前
15秒前
ybouo完成签到,获得积分10
16秒前
122456完成签到,获得积分10
16秒前
华国锋应助加贺采纳,获得20
17秒前
Jave发布了新的文献求助10
17秒前
ssy完成签到,获得积分10
18秒前
小蘑菇应助Tao采纳,获得10
18秒前
田様应助可靠雪雪采纳,获得10
20秒前
领导范儿应助嘻嘻采纳,获得10
21秒前
21秒前
麦芽糖完成签到,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262