已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PolSAR Image Classification Based on Low-Frequency and Contour Subbands-Driven Polarimetric SENet

计算机科学 模式识别(心理学) 人工智能 旋光法 特征(语言学) 卷积神经网络 特征提取 上下文图像分类 频域 领域(数学分析) 边界(拓扑) 图像(数学) 计算机视觉 数学 物理 数学分析 语言学 哲学 散射 光学
作者
Rui Qin,Xiongjun Fu,Ping Lang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 4760-4773 被引量:22
标识
DOI:10.1109/jstars.2020.3015520
摘要

In order to more efficiently mine the features of PolSAR images and build a more suitable classification model that combines the features of the polarimetric domain and the spatial domain, this article proposes a PolSAR image classification method, called low-frequency and contour subbands-driven polarimetric squeeze-and-excitation network (LC-PSENet). First, the proposed LC-PSENet introduces the nonsubsampled Laplacian pyramid to decompose polarimetric feature maps, so as to construct a multichannel PolSAR image based on the low-frequency subband and contour subband of these maps. It guides the network to perform feature mining and selection in the subbands of each polarimetric map in a supervised way, automatically balancing the contributions of polarimetric features and their subbands and the influence of interference information such as noise, making the network learning more efficient. Second, the method introduces squeeze-and-excitation operation in the convolutional neural network (CNN) to perform channel modeling on the polarimetric feature subbands. It strengthens the learning of the contributions of local maps of the polarimetric features and subbands, thereby, effectively combining the features of the polarimetric domain and the spatial domain. Experiments on the datasets of Flevoland, The Netherlands, and Oberpfaffenhofen show that the proposed LC-PSENet achieves overall accuracies of 99.66%, 99.72%, and 95.89%, which are 0.87%, 0.27%, and 1.42% higher than the baseline CNN, respectively. The isolated points in the classification results are obviously reduced, and the distinction between boundary and nonboundary is more clear and delicate. Also, the method performs better than many current state-of-the-art methods in terms of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
勤恳的语蝶完成签到 ,获得积分10
2秒前
CipherSage应助zhaoruiqi采纳,获得10
5秒前
5秒前
HaoyangDu发布了新的文献求助10
8秒前
shentaii完成签到,获得积分10
13秒前
14秒前
勤恳问薇完成签到 ,获得积分10
16秒前
Neuronicus完成签到,获得积分10
17秒前
完美世界应助小胖子采纳,获得10
18秒前
生物云完成签到,获得积分10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
ccm应助科研通管家采纳,获得10
18秒前
无解klein瓶完成签到,获得积分10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
今后应助HaoyangDu采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
GingerF应助科研通管家采纳,获得10
18秒前
liao应助科研通管家采纳,获得10
18秒前
GingerF应助科研通管家采纳,获得50
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得30
18秒前
Ak完成签到,获得积分0
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
北地风情应助科研通管家采纳,获得20
18秒前
所所应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
hanabi完成签到,获得积分10
20秒前
汉堡包应助123采纳,获得10
20秒前
科研王帝同学完成签到 ,获得积分10
21秒前
靛蓝喹啉完成签到 ,获得积分10
22秒前
科目三应助初一采纳,获得10
22秒前
李艳芬发布了新的文献求助10
23秒前
小小完成签到 ,获得积分10
23秒前
明亮夏旋完成签到 ,获得积分10
24秒前
黑大侠完成签到 ,获得积分0
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502