PolSAR Image Classification Based on Low-Frequency and Contour Subbands-Driven Polarimetric SENet

计算机科学 模式识别(心理学) 人工智能 旋光法 特征(语言学) 卷积神经网络 特征提取 上下文图像分类 频域 领域(数学分析) 边界(拓扑) 图像(数学) 计算机视觉 数学 物理 数学分析 语言学 哲学 散射 光学
作者
Rui Qin,Xiongjun Fu,Ping Lang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 4760-4773 被引量:22
标识
DOI:10.1109/jstars.2020.3015520
摘要

In order to more efficiently mine the features of PolSAR images and build a more suitable classification model that combines the features of the polarimetric domain and the spatial domain, this article proposes a PolSAR image classification method, called low-frequency and contour subbands-driven polarimetric squeeze-and-excitation network (LC-PSENet). First, the proposed LC-PSENet introduces the nonsubsampled Laplacian pyramid to decompose polarimetric feature maps, so as to construct a multichannel PolSAR image based on the low-frequency subband and contour subband of these maps. It guides the network to perform feature mining and selection in the subbands of each polarimetric map in a supervised way, automatically balancing the contributions of polarimetric features and their subbands and the influence of interference information such as noise, making the network learning more efficient. Second, the method introduces squeeze-and-excitation operation in the convolutional neural network (CNN) to perform channel modeling on the polarimetric feature subbands. It strengthens the learning of the contributions of local maps of the polarimetric features and subbands, thereby, effectively combining the features of the polarimetric domain and the spatial domain. Experiments on the datasets of Flevoland, The Netherlands, and Oberpfaffenhofen show that the proposed LC-PSENet achieves overall accuracies of 99.66%, 99.72%, and 95.89%, which are 0.87%, 0.27%, and 1.42% higher than the baseline CNN, respectively. The isolated points in the classification results are obviously reduced, and the distinction between boundary and nonboundary is more clear and delicate. Also, the method performs better than many current state-of-the-art methods in terms of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助yjw采纳,获得10
刚刚
无花果应助小鱼采纳,获得10
1秒前
1秒前
谦让芷蝶发布了新的文献求助10
1秒前
跳跳熊发布了新的文献求助30
1秒前
avalanche应助卷芽大王采纳,获得10
2秒前
2秒前
3秒前
充电宝应助某某采纳,获得30
3秒前
4秒前
无极微光应助无敌龙傲天采纳,获得20
4秒前
Crystal发布了新的文献求助10
4秒前
星辰大海应助DMMM采纳,获得10
4秒前
善良苞络发布了新的文献求助10
4秒前
5秒前
wu发布了新的文献求助10
6秒前
邢智翔发布了新的文献求助10
6秒前
me完成签到,获得积分20
7秒前
123完成签到,获得积分10
7秒前
所所应助王博采纳,获得10
7秒前
田様应助satchzhao采纳,获得10
7秒前
8秒前
8秒前
雪雪儿发布了新的文献求助30
8秒前
卡卡发布了新的文献求助10
8秒前
9秒前
调皮的魔镜完成签到,获得积分10
9秒前
nia完成签到,获得积分10
9秒前
2257778553完成签到,获得积分10
9秒前
跳跳熊发布了新的文献求助30
9秒前
9秒前
10秒前
Jammie完成签到,获得积分10
10秒前
10秒前
科目三应助念兹在兹采纳,获得10
10秒前
11秒前
mmmmm发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
jixiangzi完成签到,获得积分10
12秒前
领导范儿应助鸭鸭乐园采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107