PolSAR Image Classification Based on Low-Frequency and Contour Subbands-Driven Polarimetric SENet

计算机科学 模式识别(心理学) 人工智能 旋光法 特征(语言学) 卷积神经网络 特征提取 上下文图像分类 频域 领域(数学分析) 边界(拓扑) 图像(数学) 计算机视觉 数学 物理 语言学 光学 数学分析 哲学 散射
作者
Rui Qin,Xiongjun Fu,Ping Lang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 4760-4773 被引量:22
标识
DOI:10.1109/jstars.2020.3015520
摘要

In order to more efficiently mine the features of PolSAR images and build a more suitable classification model that combines the features of the polarimetric domain and the spatial domain, this article proposes a PolSAR image classification method, called low-frequency and contour subbands-driven polarimetric squeeze-and-excitation network (LC-PSENet). First, the proposed LC-PSENet introduces the nonsubsampled Laplacian pyramid to decompose polarimetric feature maps, so as to construct a multichannel PolSAR image based on the low-frequency subband and contour subband of these maps. It guides the network to perform feature mining and selection in the subbands of each polarimetric map in a supervised way, automatically balancing the contributions of polarimetric features and their subbands and the influence of interference information such as noise, making the network learning more efficient. Second, the method introduces squeeze-and-excitation operation in the convolutional neural network (CNN) to perform channel modeling on the polarimetric feature subbands. It strengthens the learning of the contributions of local maps of the polarimetric features and subbands, thereby, effectively combining the features of the polarimetric domain and the spatial domain. Experiments on the datasets of Flevoland, The Netherlands, and Oberpfaffenhofen show that the proposed LC-PSENet achieves overall accuracies of 99.66%, 99.72%, and 95.89%, which are 0.87%, 0.27%, and 1.42% higher than the baseline CNN, respectively. The isolated points in the classification results are obviously reduced, and the distinction between boundary and nonboundary is more clear and delicate. Also, the method performs better than many current state-of-the-art methods in terms of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的傲易完成签到 ,获得积分10
1秒前
2秒前
疾风知劲草完成签到,获得积分10
2秒前
3秒前
汉堡包应助whale采纳,获得10
6秒前
CodeCraft应助依米zhang采纳,获得10
7秒前
无情修杰完成签到 ,获得积分10
7秒前
文静的牛排完成签到,获得积分10
8秒前
8秒前
顺心的千萍完成签到,获得积分10
9秒前
无花果应助聪慧的凝海采纳,获得10
10秒前
2316690509完成签到 ,获得积分10
10秒前
10秒前
20年单身狗完成签到,获得积分10
12秒前
陈诗羽完成签到,获得积分10
12秒前
cz发布了新的文献求助10
13秒前
皮卡丘比特应助lalala采纳,获得20
13秒前
爱听歌从蓉关注了科研通微信公众号
14秒前
香蕉觅云应助zh采纳,获得10
14秒前
15秒前
金金金完成签到,获得积分10
16秒前
17秒前
LONG发布了新的文献求助10
19秒前
红烧肉耶发布了新的文献求助10
20秒前
kirazou完成签到,获得积分10
20秒前
lwj完成签到,获得积分10
21秒前
26秒前
共享精神应助自觉的小凝采纳,获得10
30秒前
JamesPei应助琪求好运采纳,获得10
30秒前
31秒前
31秒前
31秒前
guard发布了新的文献求助10
31秒前
Sweety-完成签到 ,获得积分10
32秒前
32秒前
达拉崩吧完成签到,获得积分10
33秒前
童万明完成签到,获得积分20
34秒前
没烦恼完成签到,获得积分10
35秒前
zz完成签到 ,获得积分10
35秒前
Owen应助TingtingGZ采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511