Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT

神经组阅片室 医学 算法 介入放射学 接收机工作特性 放射科 卷积神经网络 切断 诊断准确性 主动脉夹层 基本事实 对比度(视觉) 超声波 人工智能 核医学 主动脉 计算机科学 神经学 外科 内科学 物理 精神科 量子力学
作者
Akinori Hata,Masahiro Yanagawa,Kazuki Yamagata,Yuuki Suzuki,Shoji Kido,Atsushi Kawata,Shuhei Doi,Yuriko Yoshida,Tomo Miyata,Mitsuko Tsubamoto,Noriko Kikuchi,Noriyuki Tomiyama
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (2): 1151-1159 被引量:43
标识
DOI:10.1007/s00330-020-07213-w
摘要

ObjectivesTo develop a deep learning–based algorithm to detect aortic dissection (AD) and evaluate the diagnostic ability of the algorithm compared with those of radiologists.MethodsIncluded in the study were 170 patients (85 with AD and 85 without AD). An AD detection algorithm was developed using a convolutional neural network with Xception architecture. Of the patient data, 80% were used for training and validation and 20% were used for testing. Fivefold cross-validation was performed to evaluate the method. An average of 6688 non-contrast-enhanced CT images (slice thickness, 5 mm) were used for training. A radiologist reviewed both contrast-enhanced and non-contrast-enhanced images and identified the slices of AD. The identified slices were used as ground truth. Receiver operating characteristic curve and area under the curve (AUC) analysis was performed. Five radiologists independently evaluated the images. The accuracy, sensitivity, and specificity of the algorithm and those of the radiologists were compared.ResultsThe AUC of the developed algorithm was 0.940, and a cutoff value of 0.400 provided accuracy of 90.0%, sensitivity of 91.8%, and specificity of 88.2%. For the radiologists, median (range) accuracy, sensitivity, and specificity were 88.8 (83.5–94.1)%, 90.6 (83.5–94.1)%, and 94.1 (72.9–97.6)%, respectively. There was no significant difference in performance in terms of accuracy, sensitivity, or specificity between the algorithm and the average performance of the radiologists (p > 0.05).ConclusionsThe developed algorithm showed comparable diagnostic performance to radiologists for detecting AD, which suggests the potential of the proposed method to support clinical practice by reducing missed ADs.Key Points • A deep learning–based algorithm for detecting aortic dissection was developed using the non-contrast-enhanced CT images of 170 patients. • The algorithm had an AUC of 0.940 for detecting aortic dissection. • The accuracy, sensitivity, and specificity of the algorithm were comparable to those of radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yueyue完成签到,获得积分20
1秒前
cs完成签到 ,获得积分20
2秒前
十年小橘完成签到,获得积分10
2秒前
Emiya发布了新的文献求助10
2秒前
SciGPT应助xxzhao采纳,获得10
2秒前
史鸿应助加菲丰丰采纳,获得10
2秒前
小仙虎殿下完成签到 ,获得积分10
3秒前
3秒前
JeneyTurtle完成签到,获得积分10
3秒前
4秒前
小AB发布了新的文献求助30
4秒前
7秒前
moumu发布了新的文献求助50
7秒前
8秒前
万事顺遂完成签到,获得积分10
9秒前
魁梧的小伙子完成签到 ,获得积分10
9秒前
风华发布了新的文献求助10
10秒前
WN发布了新的文献求助10
10秒前
高贵的晓筠完成签到,获得积分10
11秒前
秀丽烨霖给独特的魔镜的求助进行了留言
11秒前
11秒前
Jacky77应助天天小女孩采纳,获得20
12秒前
Emiya完成签到,获得积分20
12秒前
研友_enPlon完成签到,获得积分10
12秒前
13秒前
13秒前
阿喵完成签到,获得积分10
13秒前
土豆烧牛腩完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
儒雅沛蓝完成签到,获得积分10
15秒前
大模型应助蜗牛采纳,获得10
15秒前
小斌完成签到,获得积分10
16秒前
无花果应助友好若南采纳,获得10
16秒前
yy完成签到,获得积分20
16秒前
寻觅完成签到,获得积分10
17秒前
zjj发布了新的文献求助10
17秒前
tulips发布了新的文献求助10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227527
求助须知:如何正确求助?哪些是违规求助? 2875513
关于积分的说明 8191595
捐赠科研通 2542804
什么是DOI,文献DOI怎么找? 1373054
科研通“疑难数据库(出版商)”最低求助积分说明 646641
邀请新用户注册赠送积分活动 621130