Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors

电解质 超级电容器 材料科学 导电体 电极 化学工程 纳米技术 复合材料 化学 电容 工程类 物理化学
作者
Haoxiang Zhang,Wenbin Niu,Shufen Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:387: 124105-124105 被引量:109
标识
DOI:10.1016/j.cej.2020.124105
摘要

Stretchable and wearable electronic devices have attracted increasing attention for the realization of stretchable and compressible energy storage devices. To adapt to human body motion under rigorous and extreme working conditions, it is highly desirable to develop supercapacitors with remarkable capacitance retention during substantial stretching and compressing. Here, an intrinsically ultra-stretchable and compressible supercapacitor with remarkable capacitance retention is successfully constructed based on a new extremely stretchable, sticky and conductive double-network (DN) ionic hydrogel electrolyte. The hydrogel electrolyte with extreme stretchability (>18,000%), high toughness, good compression recovery performance, and conductivity (2.0 S/m) is achieved by introducing a chemically and physically crosslinked polyacrylamide-polyvinylpyrrolidone (PAAM-PVP) DN and LiCl electrolyte. In particular, the adhesive force of the hydrogel electrolyte surface is enhanced 13 times due to “salting-out effect”. A supercapacitor fabricated based on this DN hydrogel electrolyte exhibits superior intrinsic ultra-stretchability (2500% strain), the ability to withstand compressibility (up to 7100-times the weight of the supercapacitor), and a high specific capacity (308.9 F/g at a current density of 0.21 A/g). More importantly, the supercapacitor shows remarkable capacitance retention (87% at 2500% tensile strain, 90% at 7100-fold compressive weight). In addition, the wrinkled-structured all-solid supercapacitor maintained over 97% capacitance after being stretched to 200% for 6000 cycles, and maintained 104% capacitance after being compressed to 7100-times its own weight for 1000 cycles. This work provides new insights into the synthesis of ionic electrolyte and promotes the development of next-generation all-solid-state energy storage devices with high stretchability and compressibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
GG完成签到 ,获得积分10
1秒前
费尔明娜完成签到,获得积分10
1秒前
明明明明明明明明z完成签到,获得积分10
2秒前
2秒前
颖中竹子发布了新的文献求助10
2秒前
丁昆完成签到,获得积分10
2秒前
顾里发布了新的文献求助10
2秒前
wesleyzcheng发布了新的文献求助10
2秒前
an完成签到,获得积分20
2秒前
wanci应助羊羊羊采纳,获得10
3秒前
淡然冬灵发布了新的文献求助100
3秒前
4秒前
贤惠的碧空完成签到,获得积分10
4秒前
鲤鱼鸽子应助sekidesu采纳,获得10
4秒前
ccc发布了新的文献求助10
5秒前
得得发布了新的文献求助10
6秒前
6秒前
科研小白发布了新的文献求助10
6秒前
Song完成签到 ,获得积分10
6秒前
汉堡包应助许多年以后采纳,获得10
7秒前
8秒前
zzw完成签到,获得积分10
8秒前
8秒前
8秒前
Xiaoping完成签到,获得积分10
8秒前
优雅的纸鹤完成签到,获得积分10
9秒前
ding应助有一个盆采纳,获得10
10秒前
啦啦啦发布了新的文献求助10
10秒前
王爱芳发布了新的文献求助10
10秒前
风中虔纹完成签到,获得积分10
10秒前
10秒前
10秒前
吹吹晚风发布了新的文献求助20
10秒前
wesleyzcheng完成签到,获得积分10
11秒前
12秒前
怕黑的道天完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299266
求助须知:如何正确求助?哪些是违规求助? 2934183
关于积分的说明 8467773
捐赠科研通 2607652
什么是DOI,文献DOI怎么找? 1423827
科研通“疑难数据库(出版商)”最低求助积分说明 661704
邀请新用户注册赠送积分活动 645391