电解质
超级电容器
材料科学
导电体
电极
化学工程
纳米技术
复合材料
化学
电容
工程类
物理化学
作者
Haoxiang Zhang,Wenbin Niu,Shufen Zhang
标识
DOI:10.1016/j.cej.2020.124105
摘要
Stretchable and wearable electronic devices have attracted increasing attention for the realization of stretchable and compressible energy storage devices. To adapt to human body motion under rigorous and extreme working conditions, it is highly desirable to develop supercapacitors with remarkable capacitance retention during substantial stretching and compressing. Here, an intrinsically ultra-stretchable and compressible supercapacitor with remarkable capacitance retention is successfully constructed based on a new extremely stretchable, sticky and conductive double-network (DN) ionic hydrogel electrolyte. The hydrogel electrolyte with extreme stretchability (>18,000%), high toughness, good compression recovery performance, and conductivity (2.0 S/m) is achieved by introducing a chemically and physically crosslinked polyacrylamide-polyvinylpyrrolidone (PAAM-PVP) DN and LiCl electrolyte. In particular, the adhesive force of the hydrogel electrolyte surface is enhanced 13 times due to “salting-out effect”. A supercapacitor fabricated based on this DN hydrogel electrolyte exhibits superior intrinsic ultra-stretchability (2500% strain), the ability to withstand compressibility (up to 7100-times the weight of the supercapacitor), and a high specific capacity (308.9 F/g at a current density of 0.21 A/g). More importantly, the supercapacitor shows remarkable capacitance retention (87% at 2500% tensile strain, 90% at 7100-fold compressive weight). In addition, the wrinkled-structured all-solid supercapacitor maintained over 97% capacitance after being stretched to 200% for 6000 cycles, and maintained 104% capacitance after being compressed to 7100-times its own weight for 1000 cycles. This work provides new insights into the synthesis of ionic electrolyte and promotes the development of next-generation all-solid-state energy storage devices with high stretchability and compressibility.
科研通智能强力驱动
Strongly Powered by AbleSci AI