The Hexosamine Signaling Pathway: Deciphering the "O-GlcNAc Code"

磷酸化 信号转导 营养感应 生物化学 细胞生物学 丝氨酸 生物 尿苷二磷酸 激酶 代谢途径 苏氨酸 化学
作者
Dona C. Love,John A. Hanover
出处
期刊:Science's STKE [American Association for the Advancement of Science (AAAS)]
卷期号:2005 (312) 被引量:443
标识
DOI:10.1126/stke.3122005re13
摘要

A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不易BY完成签到,获得积分10
刚刚
谢谢完成签到,获得积分20
1秒前
xtingkk发布了新的文献求助10
1秒前
酷波er应助tuanzi采纳,获得10
1秒前
Silieze完成签到,获得积分10
1秒前
研友_VZG7GZ应助halosheep采纳,获得10
2秒前
3秒前
3秒前
乔妙完成签到,获得积分10
3秒前
3秒前
自由的飞翔完成签到,获得积分20
4秒前
4秒前
现代含蕾完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
xtingkk完成签到,获得积分10
5秒前
ccy完成签到,获得积分20
6秒前
芒果柠檬发布了新的文献求助10
6秒前
鼠鼠应助谢谢采纳,获得10
6秒前
6秒前
爆米花应助鱼头采纳,获得10
6秒前
7秒前
ShuangqingYE发布了新的文献求助10
7秒前
halosheep完成签到,获得积分10
9秒前
科目三应助不懂白采纳,获得10
9秒前
9秒前
程程程发布了新的文献求助10
9秒前
zero发布了新的文献求助10
9秒前
9秒前
喷喷完成签到,获得积分20
10秒前
酷酷曼云发布了新的文献求助10
10秒前
10秒前
传奇3应助李哈哈采纳,获得10
10秒前
10秒前
原子完成签到,获得积分10
10秒前
诚心的捕关注了科研通微信公众号
11秒前
科目三应助安静远航采纳,获得10
11秒前
11秒前
yingjin发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514020
求助须知:如何正确求助?哪些是违规求助? 3096358
关于积分的说明 9231395
捐赠科研通 2791445
什么是DOI,文献DOI怎么找? 1531886
邀请新用户注册赠送积分活动 711660
科研通“疑难数据库(出版商)”最低求助积分说明 706931