亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis and prediction of antibacterial peptides

计算机科学 抗菌活性
作者
Sneh Lata,BK Sharma,Gajendra P. S. Raghava
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:8 (1): 263-263 被引量:189
标识
DOI:10.1186/1471-2105-8-263
摘要

Antibacterial peptides are important components of the innate immune system, used by the host to protect itself from different types of pathogenic bacteria. Over the last few decades, the search for new drugs and drug targets has prompted an interest in these antibacterial peptides. We analyzed 486 antibacterial peptides, obtained from antimicrobial peptide database APD, in order to understand the preference of amino acid residues at specific positions in these peptides. It was observed that certain types of residues are preferred over others in antibacterial peptides, particularly at the N and C terminus. These observations encouraged us to develop a method for predicting antibacterial peptides in proteins from their amino acid sequence. First, the N-terminal residues were used for predicting antibacterial peptides using Artificial Neural Network (ANN), Quantitative Matrices (QM) and Support Vector Machine (SVM), which resulted in an accuracy of 83.63%, 84.78% and 87.85%, respectively. Then, the C-terminal residues were used for developing prediction methods, which resulted in an accuracy of 77.34%, 82.03% and 85.16% using ANN, QM and SVM, respectively. Finally, ANN, QM and SVM models were developed using N and C terminal residues, which achieved an accuracy of 88.17%, 90.37% and 92.11%, respectively. All the models developed in this study were evaluated using five-fold cross validation technique. These models were also tested on an independent or blind dataset. Among antibacterial peptides, there is preference for certain residues at N and C termini, which helps to demarcate them from non-antibacterial peptides. Both the termini play a crucial role in imparting the antibacterial property to these peptides. Among the methods developed, SVM shows the best performance in predicting antibacterial peptides followed by QM and ANN, in that order. AntiBP (Antibacterial peptides) will help in discovering efficacious antibacterial peptides, which we hope will prove to be a boon to combat the dreadful antibiotic resistant bacteria. A user friendly web server has also been developed to help the biological community, which is accessible at http://www.imtech.res.in/raghava/antibp/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
研友_Lw46dn完成签到,获得积分20
2分钟前
3分钟前
194711发布了新的文献求助10
3分钟前
Wilson完成签到 ,获得积分10
4分钟前
桐桐应助PDY采纳,获得10
4分钟前
暮迟途远完成签到,获得积分10
5分钟前
6分钟前
PDY发布了新的文献求助10
6分钟前
彩色莞完成签到 ,获得积分10
6分钟前
PDY完成签到,获得积分10
6分钟前
wsh完成签到 ,获得积分10
7分钟前
7分钟前
oaoalaa完成签到 ,获得积分10
9分钟前
kaka完成签到,获得积分10
9分钟前
ddd完成签到 ,获得积分10
9分钟前
笨蛋小狗梦想为春日半岛蹦极完成签到,获得积分10
10分钟前
鳗鱼鱼完成签到 ,获得积分10
11分钟前
194711发布了新的文献求助10
12分钟前
12分钟前
万能图书馆应助Luis采纳,获得10
12分钟前
爱静静应助194711采纳,获得30
12分钟前
ho完成签到,获得积分10
13分钟前
14分钟前
JZ完成签到,获得积分10
15分钟前
JZ发布了新的文献求助10
16分钟前
16分钟前
Owen应助陈媛采纳,获得10
16分钟前
章鱼完成签到,获得积分10
17分钟前
19分钟前
陈媛发布了新的文献求助10
19分钟前
kuoping完成签到,获得积分10
19分钟前
21分钟前
PD完成签到,获得积分10
22分钟前
22分钟前
22分钟前
义气的书雁完成签到,获得积分10
22分钟前
23分钟前
andrele发布了新的文献求助10
23分钟前
谦也静熵完成签到,获得积分10
24分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846065
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757