Experimental investigation of hydraulic fracturing in random naturally fractured blocks

反向 阶段(地层学) 水力压裂 洞穴 算法 磁导率 计算机科学 石油工程 地质学 数学 几何学 化学 古生物学 生物化学 考古 历史
作者
Jian Zhou,Yan Jin,Mian Chen
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier]
卷期号:47 (7): 1193-1199 被引量:161
标识
DOI:10.1016/j.ijrmms.2010.07.005
摘要

Currently, it is still challenging to determine the geological parameters of natural caves in deep reservoirs accurately. By inheriting the advantages of Machine Learning (ML) method and physics modelling, a novel ML-Physics method is developed to determine the geological parameters of natural caves based on the data mining of fracturing curves obtained during Hydraulic Fracturing (HF) operation. The computational time of ML-Physics method is divided into two stages, preparation-stage and operation-stage. The preparation-stage happens before HF operation, therefore there is no limitation to the computational time. During this preparation-stage, the implicit relationship between cave property and fracturing curve is generated using ML, which usually fails to ensure the accuracy under different geological and operational conditions. The operation-stage happens during HF operation, in which the computational time is limited because the geological parameters of natural caves are required to be determined in real time. During this operation-stage, the physical modelling based inverse analysis method is carried out, in which the initial value is chosen based on the ML results obtained in preparation-stage. Results show that, with the same target error, the iteration step of ML-Physics method (1 iteration) is much less than that of traditional inverse analysis method (5 iterations). After the same iterations, the error of fracturing curve using the traditional inverse analysis method is 0.40%, while the error using ML-Physics method is 0.02%. Meanwhile, the error of permeability using the traditional ML is up to 10.33%, while the error of ML-Physics method is 0.29%. The present ML-Physics method is potentially useful to optimize the HF design based on the data mining of fracturing curves in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蛋筒完成签到,获得积分10
1秒前
wy.he发布了新的文献求助10
1秒前
2秒前
周周喝粥粥完成签到,获得积分10
2秒前
hitagi发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助嗑瓜子传奇采纳,获得10
3秒前
wby完成签到,获得积分20
3秒前
4秒前
星辰发布了新的文献求助10
5秒前
5秒前
wzjs发布了新的文献求助10
6秒前
wentyli完成签到,获得积分10
6秒前
7秒前
wby发布了新的文献求助10
8秒前
9秒前
舒适凡阳完成签到,获得积分10
9秒前
漂亮的青荷关注了科研通微信公众号
9秒前
10秒前
严俊东发布了新的文献求助10
10秒前
Suuu应助外向的含羞草采纳,获得10
11秒前
单纯孤兰完成签到,获得积分10
11秒前
11秒前
hwen1998完成签到 ,获得积分10
12秒前
酷酷妙梦发布了新的文献求助10
12秒前
Haisenky发布了新的文献求助10
12秒前
明朗完成签到 ,获得积分10
13秒前
在水一方应助司徒无剑采纳,获得10
13秒前
14秒前
15秒前
nater4ver发布了新的文献求助10
16秒前
17秒前
wy.he完成签到,获得积分0
17秒前
17秒前
科研通AI2S应助葫芦瓢采纳,获得10
18秒前
烂漫的如天完成签到 ,获得积分10
19秒前
doctor fighting完成签到,获得积分10
20秒前
20秒前
吲哚好呀发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825