生物相容性
纳米技术
生化工程
材料科学
工程类
冶金
作者
Fatima M. Plieva,Igor Yu. Galaev,Wim Noppe,Bo Mattìasson
标识
DOI:10.1016/j.tim.2008.08.005
摘要
There is a great demand for improved technologies with regard to rapid processing of nano- and microparticles. The handling of viruses in addition to microbial and mammalian cells requires the availability of appropriate adsorbents. Recent developments in macroporous gels produced at subzero temperatures (known as cryogels) have demonstrated an efficiency for processing cell and virus suspensions, cell separation and cell culture applications. Their unique combination of properties such as macroporosity, tissue-like elasticity and biocompatibility, physical and chemical stability and ease of preparation, renders these materials interesting candidates for a broad range of potential applications within microbiological research. This review describes current applications of macroporous cryogels in microbiology with a brief discussion of future perspectives. There is a great demand for improved technologies with regard to rapid processing of nano- and microparticles. The handling of viruses in addition to microbial and mammalian cells requires the availability of appropriate adsorbents. Recent developments in macroporous gels produced at subzero temperatures (known as cryogels) have demonstrated an efficiency for processing cell and virus suspensions, cell separation and cell culture applications. Their unique combination of properties such as macroporosity, tissue-like elasticity and biocompatibility, physical and chemical stability and ease of preparation, renders these materials interesting candidates for a broad range of potential applications within microbiological research. This review describes current applications of macroporous cryogels in microbiology with a brief discussion of future perspectives.
科研通智能强力驱动
Strongly Powered by AbleSci AI