Prediction of Intravenous Immunoglobulin Unresponsiveness in Patients With Kawasaki Disease

医学 逻辑回归 川崎病 接收机工作特性 抗体 曲线下面积 内科学 科恩卡帕 卡帕 免疫学 胃肠病学 机器学习 语言学 哲学 动脉 计算机科学
作者
Tohru Kobayashi,Yoshinari Inoue,Kazuo Takeuchi,Yasunori Okada,Kazushi Tamura,Takeshi Tomomasa,Tomio Kobayashi,Akihiro Morikawa
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:113 (22): 2606-2612 被引量:795
标识
DOI:10.1161/circulationaha.105.592865
摘要

In the present study, we developed models to predict unresponsiveness to intravenous immunoglobulin (IVIG) in Kawasaki disease (KD).We reviewed clinical records of 546 consecutive KD patients (development dataset) and 204 subsequent KD patients (validation dataset). All received IVIG for treatment of KD. IVIG nonresponders were defined by fever persisting beyond 24 hours or recrudescent fever associated with KD symptoms after an afebrile period. A 7-variable logistic model was constructed, including day of illness at initial treatment, age in months, percentage of white blood cells representing neutrophils, platelet count, and serum aspartate aminotransferase, sodium, and C-reactive protein, which generated an area under the receiver-operating-characteristics curve of 0.84 and 0.90 for the development and validation datasets, respectively. Using both datasets, the 7 variables were used to generate a simple scoring model that gave an area under the receiver-operating-characteristics curve of 0.85. For a cutoff of 0.15 or more in the logistic regression model and 4 points or more in the simple scoring model, sensitivity and specificity were 86% and 67% in the logistic model and 86% and 68% in the simple scoring model. The kappa statistic is 0.67, indicating good agreement between the logistic and simple scoring models.Our predictive models showed high sensitivity and specificity in identifying IVIG nonresponders among KD patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助haha采纳,获得10
刚刚
XSY发布了新的文献求助10
刚刚
1秒前
wnw发布了新的文献求助30
1秒前
搜集达人应助lsj采纳,获得10
2秒前
2秒前
高大的阑香完成签到,获得积分10
2秒前
邱燈发布了新的文献求助20
2秒前
沁秋完成签到,获得积分10
3秒前
yyyy发布了新的文献求助10
3秒前
3秒前
笑点低机器猫完成签到,获得积分10
3秒前
是龙龙呀完成签到,获得积分10
4秒前
科研通AI6应助Divine采纳,获得10
4秒前
思源应助mj采纳,获得10
4秒前
4秒前
jjjjchou发布了新的文献求助10
4秒前
犹豫的行恶应助百事可乐采纳,获得10
5秒前
6秒前
7秒前
7秒前
蜂窝杯子完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
情怀应助fzj采纳,获得10
8秒前
8秒前
8秒前
不停发布了新的文献求助10
8秒前
深情安青应助刘佳恬采纳,获得10
8秒前
Cui发布了新的文献求助10
9秒前
Icy完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
桀桀桀完成签到,获得积分10
10秒前
liming完成签到,获得积分20
10秒前
开朗若之发布了新的文献求助30
10秒前
yyyy完成签到,获得积分10
11秒前
科研通AI6应助下次一定采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095