参数统计
不确定度分析
生物圈
放射性废物
不确定度量化
灵敏度(控制系统)
可见的
不确定性传播
计算机科学
敏感性分析
计量经济学
环境科学
统计
数学
工程类
模拟
算法
物理
废物管理
机器学习
量子力学
电子工程
天文
作者
David Draper,André S. Pereira,Pedro Prado,Andrea Saltelli,Ryan Cheal,Sonsoles Eguilior,Bruno Mendes,Stefano Tarantola
标识
DOI:10.1016/s0010-4655(98)00170-2
摘要
We examine a conceptual framework for accounting for all sources of uncertainty in complex prediction problems, involving six ingredients: past data, future observables, and scenario, structural, parametric, and predictive uncertainty. We apply this framework to nuclear waste disposal using a computer simulation environment — GTMCHEM — which "deterministically" models the one-dimensional migration of radionuclides through the geosphere up to the biosphere. Focusing on scenario and parametric uncertainty, we show that mean predicted maximum doses to humans on the earth's surface due to 1–129, and uncertainty bands around those predictions, are larger when scenario uncertainty is properly assessed and propagated. We also illustrate the value of a new method for global sensitivity analysis of model output called extended FAST.
科研通智能强力驱动
Strongly Powered by AbleSci AI