Performance evaluation of AquaCrop model for maize crop in a semi-arid environment

秋收作物 灌溉 均方误差 数学 环境科学 决定系数 作物模拟模型 生物量(生态学) 农学 作物 野外试验 水文学(农业) 统计 生物 工程类 岩土工程
作者
Meysam Abedinpour,A. Sarangi,T.B.S. Rajput,Man Singh,Himanshu Pathak,Tanveer Ahmad
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:110: 55-66 被引量:239
标识
DOI:10.1016/j.agwat.2012.04.001
摘要

Crop growth simulation models of varying complexity have been developed for predicting the effects of soil, water and nutrients on grain and biomass yields and water productivity of different crops. These models are calibrated and validated for a given region using the data generated from field experiments. In this study, a water-driven crop model AquaCrop, developed by FAO was calibrated and validated for maize crop under varying irrigation and nitrogen regimes. The experiment was conducted at the research farm of the Water Technology Centre, IARI, New Delhi during kharif 2009 and 2010. Calibration was done using the data of 2009 and validation with the data of 2010. Irrigation applications comprised rainfed, i.e. no irrigation (W1) irrigation at 50% of field capacity (FC) (W2) at 75% FC (W3) and full irrigation (W4). Nitrogen application levels were no nitrogen (N1), 75 kg ha−1 (N2) and 150 kg ha−1 (N3). Model efficiency (E), coefficient of determination (R2), Root Mean Square error (RMSE) and Mean Absolute Error (MAE) were used to test the model performance. The model was calibrated for simulating maize grain and biomass yield for all treatment levels with the prediction error statistics 0.95 < E < 0.99, 0.29 < RMSE < 0.42, 0.9 < R2 < 0.91 and 0.17 < MAE < 0.51 t ha−1. Upon validation, the E was 0.95 and 0.98; MAE was 0.11 and 1.08 and RMSE was 0.1 and 0.75 for grain and biomass yield, respectively. The prediciton error in simulation of grain yield and biomass under all irrigation and nitrogen levels ranged from a minimum of 0.47% to 5.91% and maximum of 4.36% to 11.05%, respectively. The highest and the lowest accuracy to predict yield and biomass was obtained at W4N3 and W1N1 treatments, respectively. The model prediciton error in simulating the water productivity (WP) varied from 2.35% to 27.5% for different irrigation and nitrogen levels. Over all, the FAO AquaCrop model predicted maize yield with acceptable accuracy under variable irrigation and nitrogen levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助坦率的海豚采纳,获得30
1秒前
1秒前
Hello应助叶宇豪采纳,获得10
1秒前
1秒前
qq完成签到 ,获得积分10
1秒前
1秒前
优美曲奇发布了新的文献求助10
2秒前
3秒前
3秒前
懒猫发布了新的文献求助10
4秒前
CodeCraft应助bobo采纳,获得10
4秒前
13536610141发布了新的文献求助10
4秒前
飞奔的小田完成签到,获得积分10
5秒前
隐形曼青应助文静的柠檬采纳,获得10
6秒前
mtt发布了新的文献求助10
6秒前
充电宝应助苏silence采纳,获得10
6秒前
7秒前
英姑应助毛毛采纳,获得10
7秒前
Jasper应助李昕123采纳,获得10
7秒前
L同学发布了新的文献求助10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
口腔溃杨发布了新的文献求助10
10秒前
科研通AI6应助13536610141采纳,获得10
10秒前
weilong发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
今后应助沐兮采纳,获得10
12秒前
12秒前
CodeCraft应助中华田园博采纳,获得10
12秒前
12秒前
14秒前
NexusExplorer应助yyj采纳,获得10
14秒前
全明星阿杜完成签到,获得积分10
14秒前
所所应助阿正嗖啪采纳,获得10
14秒前
pollen06完成签到,获得积分10
15秒前
笙霜半夏发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578178
求助须知:如何正确求助?哪些是违规求助? 4663118
关于积分的说明 14744673
捐赠科研通 4603816
什么是DOI,文献DOI怎么找? 2526698
邀请新用户注册赠送积分活动 1496310
关于科研通互助平台的介绍 1465712