WELL TEST MODEL IDENTIFICATION BY ARTIFICIAL NEURAL NETWORKS

人工神经网络 计算机科学 模块化设计 模块化神经网络 试验数据 人工智能 鉴定(生物学) 发电机(电路理论) 机器学习 时滞神经网络 量子力学 生物 植物 操作系统 物理 功率(物理) 程序设计语言
作者
Mustafa Verşan Kök,Esra Karakaya
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:18 (7-8): 783-794 被引量:2
标识
DOI:10.1080/10916460008949873
摘要

ABSTRACT The aim of this research is to investigate the performance of artificial neural networks computing technology, to identify preliminary well test interpretation model based on derivative plot. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The trained network is then requested to identify the well test identification model for test data, which is not used during training sessions. For creation of training examples, an analytical response generator is implemented which is capable of producing responses of various models. Both the neural network simulator and the analytical response generator is enfolded into a single package which is capable of producing diagnosis plots, transferring data and filtering the input pattern. Unlike the ones presented in literature the package utilises a distributed modular structure, by which saturation possibility of the neural network is reduced considerably. Moreover, the distributed structure allows the training sequence to be initiated on different computers, thus reducing the training time up to sixteen folds. The package is verified with several examples either analytically generated or taken from literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wzg666发布了新的文献求助10
2秒前
2秒前
aNiMeisl-E完成签到 ,获得积分10
2秒前
3秒前
科研通AI2S应助momo采纳,获得10
4秒前
6秒前
6秒前
勤恳井发布了新的文献求助10
6秒前
英吉利25发布了新的文献求助10
6秒前
林睿易发布了新的文献求助20
8秒前
9秒前
西行纪完成签到,获得积分10
11秒前
从容的灯泡完成签到,获得积分10
11秒前
雨田完成签到,获得积分10
12秒前
13秒前
句号0发布了新的文献求助10
14秒前
西行纪发布了新的文献求助10
14秒前
无情的踏歌应助echo采纳,获得30
16秒前
17秒前
18秒前
18秒前
慕青应助Zxy采纳,获得10
19秒前
LXY发布了新的文献求助10
20秒前
zhaokkkk完成签到,获得积分10
21秒前
Jasper应助WL采纳,获得10
22秒前
勤恳井完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
越野发布了新的文献求助30
24秒前
Uranus完成签到,获得积分10
25秒前
25秒前
25秒前
wanci应助科研通管家采纳,获得10
25秒前
元谷雪应助科研通管家采纳,获得10
26秒前
研友_Zb1rln应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487