氧化应激
神经保护
抗氧化剂
神经退行性变
神经科学
生物
医学
细胞生物学
疾病
生物化学
内科学
作者
Giles E. Hardingham,Stuart A. Lipton
标识
DOI:10.1089/ars.2010.3573
摘要
Oxidative/nitrosative stress contributes to the etiology of many neurological disorders in the developing and aged/mature central nervous system, including acute trauma such as ischemia and hyperoxia, as well as chronic diseases such as Alzheimer's and Parkinson's diseases. In addition to the accumulation of nonspecific oxidative damage, it is becoming clear that pathological conditions lead to the oxidative/nitrosative modification of specific proteins, including those involved in apoptosis, proteolysis, and protein (mis)folding. Several disorders, including stroke and Parkinson's disease, are associated with inactivating modifications of antioxidant enzymes themselves, thus compromising antioxidant defenses. Conversely, neuroprotective pathways, such as neurotrophin- and synaptic activity-induced signals, can upregulate key antioxidant systems, potentially contributing to the cytoprotective actions of adaptive stress responses following exercise or calorie-restriction. On the flip-side, hypofunction of these pathways is associated with the death of developing neurons. An increased knowledge of how neuronal antioxidant systems are controlled in health and disease is unearthing therapeutic targets in several disorders. Moreover, the emerging importance of master regulators of antioxidant defenses such as nuclear factor-erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is revealing ways through which intrinsic defenses may be manipulated to combat oxidative/nitrosative stress. Such approaches offer an alternative strategy to classical antioxidant interventions based on the administration of free radical scavengers and spin-traps.
科研通智能强力驱动
Strongly Powered by AbleSci AI