数学
单调多边形
算法
凸优化
一般化
统一
近端梯度法
趋同(经济学)
强单调
正多边形
操作员(生物学)
凸函数
固定点
应用数学
迭代函数
数学优化
变分不等式
收敛速度
计算机科学
数学分析
转录因子
几何学
基因
生物化学
抑制因子
化学
程序设计语言
作者
Jonathan Eckstein,Dimitri P. Bertsekas
摘要
This paper shows, by means of an operator called asplitting operator, that the Douglas--Rachford splitting method for finding a zero of the sum of two monotone operators is a special case of the proximal point algorithm. Therefore, applications of Douglas--Rachford splitting, such as the alternating direction method of multipliers for convex programming decomposition, are also special cases of the proximal point algorithm. This observation allows the unification and generalization of a variety of convex programming algorithms. By introducing a modified version of the proximal point algorithm, we derive a new,generalized alternating direction method of multipliers for convex programming. Advances of this sort illustrate the power and generality gained by adopting monotone operator theory as a conceptual framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI