不连续性分类
超导电性
平滑的
GSM演进的增强数据速率
计算
Curl(编程语言)
有限元法
标量势
凝聚态物理
标量(数学)
趋同(经济学)
磁势
磁场
应用数学
矢量势
导电体
电流(流体)
物理
机械
数学分析
计算机科学
几何学
数学
经典力学
算法
电信
量子力学
经济增长
经济
计算机视觉
热力学
程序设计语言
作者
Roberto Brambilla,Francesco Grilli,L. Martini
标识
DOI:10.1088/0953-2048/20/1/004
摘要
This paper presents a new numerical model for computing the current density, field distributions and AC losses in superconductors. The model, based on the direct magnetic field H formulation without the use of vector and scalar potentials (which are used in conventional formulations), relies on first-order edge finite elements. These elements are by construction curl conforming and therefore suitable to satisfy the continuity of the tangential component of magnetic field across adjacent elements, with no need for explicitly imposing the condition . This allows the overcoming of one of the major problems of standard nodal elements with potential formulation: in the case of strong discontinuities or nonlinearities of the physical properties of the materials and/or in presence of sharp corners in the conductors' geometry, the discontinuities of the potentials' derivatives are unnatural and without smoothing artifices the convergence of the algorithm is put at risk.
科研通智能强力驱动
Strongly Powered by AbleSci AI