Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)

药物输送 计算机科学 生化工程 药品 剂型 控制释放 扩散 化学 制药技术 材料科学 生物利用度 聚合物 药理学 纳米技术 热力学 色谱法 物理 工程类 医学
作者
J. Siepmann,Nicholas A. Peppas
出处
期刊:Advanced Drug Delivery Reviews [Elsevier]
卷期号:48 (2-3): 139-157 被引量:2026
标识
DOI:10.1016/s0169-409x(01)00112-0
摘要

The objective of this article is to review the spectrum of mathematical models that have been developed to describe drug release from hydroxypropyl methylcellulose (HPMC)-based pharmaceutical devices. The major advantages of these models are: (i) the elucidation of the underlying mass transport mechanisms; and (ii) the possibility to predict the effect of the device design parameters (e.g., shape, size and composition of HPMC-based matrix tablets) on the resulting drug release rate, thus facilitating the development of new pharmaceutical products. Simple empirical or semi-empirical models such as the classical Higuchi equation and the so-called power law, as well as more complex mechanistic theories that consider diffusion, swelling and dissolution processes simultaneously are presented, and their advantages and limitations are discussed. Various examples of practical applications to experimental drug release data are given. The choice of the appropriate mathematical model when developing new pharmaceutical products or elucidating drug release mechanisms strongly depends on the desired or required predictive ability and accuracy of the model. In many cases, the use of a simple empirical or semi-empirical model is fully sufficient. However, when reliable, detailed information are required, more complex, mechanistic theories must be applied. The present article is a comprehensive review of the current state of the art of mathematical modeling drug release from HPMC-based delivery systems and discusses the crucial points of the most important theories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助caoyy采纳,获得10
刚刚
1秒前
科研通AI2S应助DreamMaker采纳,获得10
1秒前
4秒前
zho发布了新的文献求助30
4秒前
4秒前
ywang发布了新的文献求助10
4秒前
ZD小草完成签到 ,获得积分10
5秒前
健忘曼冬完成签到,获得积分10
6秒前
hkl1542发布了新的文献求助50
7秒前
8秒前
9秒前
KYN完成签到,获得积分10
10秒前
10秒前
桐桐应助叶未晞yi采纳,获得10
10秒前
10秒前
su发布了新的文献求助10
11秒前
123456789完成签到,获得积分10
13秒前
炙热的如柏完成签到,获得积分20
13秒前
14秒前
15秒前
HWei完成签到,获得积分10
15秒前
Ryan完成签到,获得积分10
15秒前
16秒前
Jzhang应助丙队长采纳,获得10
18秒前
19秒前
GXY发布了新的文献求助30
20秒前
Lucas应助专注秋尽采纳,获得10
20秒前
20秒前
754完成签到,获得积分10
20秒前
23秒前
学习猴发布了新的文献求助10
23秒前
充电宝应助炙热的如柏采纳,获得10
24秒前
所所应助qzaima采纳,获得10
24秒前
米兰达完成签到 ,获得积分0
25秒前
xg发布了新的文献求助10
27秒前
Loooong应助Ni采纳,获得10
28秒前
28秒前
WZ0904发布了新的文献求助10
28秒前
顾矜应助博ge采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824