磁流变弹性体
隔离器
磁流变液
基础隔离
基础(拓扑)
结构工程
刚度
隔振
弹性体
工程类
材料科学
振动
声学
机械工程
电子工程
复合材料
数学分析
阻尼器
数学
帧(网络)
物理
作者
Yancheng Li,Jianchun Li,Tongfei Tian,Weihua Li
标识
DOI:10.1088/0964-1726/22/9/095020
摘要
Inspired by its controllable and field-dependent stiffness/damping properties, there has been increasing research and development of magnetorheological elastomer (MRE) for mitigation of unwanted structural or machinery vibrations using MRE isolators or absorbers. Recently, a breakthrough pilot research on the development of a highly innovative prototype adaptive MRE base isolator, with the ability for real-time adaptive control of base isolated structures against various types of earthquakes including near- or far-fault earthquakes, has been reported by the authors. As a further effort to improve the proposed MRE adaptive base isolator and to address some of the shortcomings and challenges, this paper presents systematic investigations on the development of a new highly adjustable MRE base isolator, including experimental testing and characterization of the new isolator. A soft MR elastomer has been designed, fabricated and incorporated in the laminated structure of the new MRE base isolator, which aims to obtain a highly adjustable shear modulus under a medium level of magnetic field. Comprehensive static and dynamic testing was conducted on this new adaptive MRE base isolator to examine its characteristics and evaluate its performance. The experimental results show that this new MRE base isolator can remarkably change the lateral stiffness of the isolator up to 1630% under a medium level of magnetic field. Such highly adjustable MRE base isolator makes the design and implementation of truly real-time adaptive (e.g. semi-active or smart passive) seismic isolation systems become feasible.
科研通智能强力驱动
Strongly Powered by AbleSci AI