亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Removing electroencephalographic artifacts by blind source separation

脑电图 独立成分分析 工件(错误) 模式识别(心理学) 人工智能 主成分分析 盲信号分离 计算机科学 眼电学 噪音(视频) 眼球运动 语音识别 频道(广播) 心理学 神经科学 图像(数学) 计算机网络
作者
Tzyy‐Ping Jung,Scott Makeig,Colin Humphries,Te‐Won Lee,Martin J. McKeown,Vicente J. Iragui,Terrence J. Sejnowski
出处
期刊:Psychophysiology [Wiley]
卷期号:37 (2): 163-178 被引量:2972
标识
DOI:10.1111/1469-8986.3720163
摘要

Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
狂野的水杯完成签到,获得积分10
8秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
18秒前
云是完成签到 ,获得积分10
22秒前
51秒前
little佳完成签到 ,获得积分10
52秒前
52秒前
57秒前
tang发布了新的文献求助10
1分钟前
脑洞疼应助枝江泥头车采纳,获得10
1分钟前
tang完成签到,获得积分10
1分钟前
1分钟前
tutu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
judy007发布了新的文献求助10
1分钟前
JamesPei应助枝江泥头车采纳,获得10
2分钟前
2分钟前
枝江泥头车完成签到,获得积分10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
梨子茶完成签到,获得积分10
3分钟前
含蓄夏瑶发布了新的文献求助30
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
含蓄夏瑶完成签到,获得积分10
3分钟前
3分钟前
Yuna96发布了新的文献求助10
3分钟前
4分钟前
liwang9301完成签到,获得积分10
4分钟前
LJJ完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264