Removing electroencephalographic artifacts by blind source separation

脑电图 独立成分分析 工件(错误) 模式识别(心理学) 人工智能 主成分分析 盲信号分离 计算机科学 眼电学 噪音(视频) 眼球运动 语音识别 频道(广播) 心理学 神经科学 图像(数学) 计算机网络
作者
Tzyy‐Ping Jung,Scott Makeig,Colin Humphries,Te‐Won Lee,Martin J. McKeown,Vicente J. Iragui,Terrence J. Sejnowski
出处
期刊:Psychophysiology [Wiley]
卷期号:37 (2): 163-178 被引量:2972
标识
DOI:10.1111/1469-8986.3720163
摘要

Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助张利双采纳,获得10
1秒前
杨洋完成签到,获得积分10
2秒前
顾矜应助青鸾采纳,获得10
2秒前
杨文静发布了新的文献求助10
2秒前
Yu发布了新的文献求助10
3秒前
3秒前
3秒前
彭于晏完成签到,获得积分10
3秒前
4秒前
4秒前
过时的机器猫完成签到,获得积分10
4秒前
丘比特应助直率皓轩采纳,获得10
4秒前
卑微学术人完成签到 ,获得积分10
5秒前
可乐完成签到 ,获得积分20
5秒前
共享精神应助漾漾采纳,获得10
5秒前
5秒前
5秒前
栗子栗子完成签到,获得积分10
6秒前
Hello应助文献狗采纳,获得10
6秒前
7秒前
郑利兵关注了科研通微信公众号
7秒前
纯真电源发布了新的文献求助10
7秒前
8秒前
超级元以完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
fox199753206完成签到,获得积分10
9秒前
李萍萍发布了新的文献求助20
9秒前
NexusExplorer应助FR采纳,获得10
9秒前
弦月完成签到,获得积分10
9秒前
爆米花应助动听千风采纳,获得10
10秒前
10秒前
谜迪发布了新的文献求助10
10秒前
ShaLi123发布了新的文献求助10
11秒前
kk发布了新的文献求助10
11秒前
畅快的荟发布了新的文献求助10
11秒前
11秒前
11秒前
liuziop发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355