Removing electroencephalographic artifacts by blind source separation

脑电图 独立成分分析 工件(错误) 模式识别(心理学) 人工智能 主成分分析 盲信号分离 计算机科学 眼电学 噪音(视频) 眼球运动 语音识别 频道(广播) 心理学 神经科学 图像(数学) 计算机网络
作者
Tzyy‐Ping Jung,Scott Makeig,Colin Humphries,Te‐Won Lee,Martin J. McKeown,Vicente J. Iragui,Terrence J. Sejnowski
出处
期刊:Psychophysiology [Wiley]
卷期号:37 (2): 163-178 被引量:2894
标识
DOI:10.1111/1469-8986.3720163
摘要

Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研苦行僧采纳,获得10
刚刚
传奇3应助加菲丰丰采纳,获得10
2秒前
Ting完成签到,获得积分10
5秒前
李健应助maodoudou采纳,获得10
6秒前
LSJ完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
潇洒冰蓝完成签到,获得积分10
10秒前
所所应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
王倩完成签到 ,获得积分10
13秒前
13秒前
天线宝宝发布了新的文献求助10
13秒前
14秒前
LSJ发布了新的文献求助10
14秒前
16秒前
16秒前
FashionBoy应助动听的老鼠采纳,获得10
17秒前
哭泣初夏完成签到 ,获得积分10
17秒前
maodoudou完成签到,获得积分10
18秒前
阳光半仙发布了新的文献求助10
18秒前
爆米花应助徐若楠采纳,获得10
19秒前
19秒前
自然涵易发布了新的文献求助10
19秒前
LX发布了新的文献求助10
19秒前
19秒前
thinking发布了新的文献求助10
20秒前
Mint发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706