Nuclear Shape and Architecture in Benign Fields Predict Biochemical Recurrence in Prostate Cancer Patients Following Radical Prostatectomy: Preliminary Findings

前列腺切除术 医学 前列腺癌 接收机工作特性 生化复发 癌症 数字化病理学 前列腺 放射科 病理 内科学
作者
George Lee,Robert W. Veltri,Guangjing Zhu,Sahirzeeshan Ali,Jonathan I. Epstein,Anant Madabhushi
出处
期刊:European urology focus [Elsevier]
卷期号:3 (4-5): 457-466 被引量:53
标识
DOI:10.1016/j.euf.2016.05.009
摘要

Background Gleason scoring represents the standard for diagnosis of prostate cancer (PCa) and assessment of prognosis following radical prostatectomy (RP), but it does not account for patterns in neighboring normal-appearing benign fields that may be predictive of disease recurrence. Objective To investigate (1) whether computer-extracted image features within tumor-adjacent benign regions on digital pathology images could predict recurrence in PCa patients after surgery and (2) whether a tumor plus adjacent benign signature (TABS) could better predict recurrence compared with Gleason score or features from benign or cancerous regions alone. Design, setting, and participants We studied 140 tissue microarray cores (0.6 mm each) from 70 PCa patients following surgery between 2000 and 2004 with up to 14 yr of follow-up. Overall, 22 patients experienced recurrence (biochemical [prostate-specific antigen], local, or distant recurrence and cancer death) and 48 did not. Intervention RP was performed in all patients. Outcome measurements and statistical analysis The top 10 features identified as most predictive of recurrence within both the benign and cancerous regions were combined into a 10-feature signature (TABS). Computer-extracted nuclear shape and architectural features from cancerous regions, adjacent benign fields, and TABS were evaluated via random forest classification accuracy and Kaplan-Meier survival analysis. Results and limitations Tumor-adjacent benign field features were predictive of recurrence (area under the receiver operating characteristic curve [AUC]: 0.72). Tumor-field nuclear shape descriptors and benign-field local nuclear arrangement were the predominant features found for TABS (AUC: 0.77). Combining TABS with Gleason sum further improved identification of recurrence (AUC: 0.81). All experiments were performed using threefold cross-validation without independent test set validation. Conclusions Computer-extracted nuclear features within cancerous and benign regions predict recurrence following RP. Furthermore, TABS was shown to provide added value to common predictors including Gleason sum and Kattan and Stephenson nomograms. Patient summary Future studies may benefit from evaluation of benign regions proximal to the tumor on surgically excised prostate cancer tissue for assessing risk of disease recurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助早川秋Akaiii采纳,获得10
1秒前
元谷雪发布了新的文献求助30
2秒前
吴先生完成签到,获得积分10
2秒前
包容草莓发布了新的文献求助20
3秒前
3秒前
顾矜应助欧阳万仇采纳,获得10
4秒前
4秒前
小葵完成签到,获得积分10
4秒前
所所应助ZXC采纳,获得10
4秒前
Criminology34应助xhxh5946采纳,获得10
4秒前
5秒前
陈年人少熬夜完成签到 ,获得积分10
5秒前
尊敬的惠发布了新的文献求助30
5秒前
6秒前
6秒前
Yianyan完成签到 ,获得积分20
6秒前
aac完成签到,获得积分10
6秒前
sss关注了科研通微信公众号
6秒前
雪松发布了新的文献求助10
6秒前
linkman发布了新的文献求助50
7秒前
Mic应助FyD采纳,获得10
7秒前
7秒前
脑洞疼应助文右三采纳,获得10
8秒前
醒醒应助懒羊羊采纳,获得10
8秒前
8秒前
8秒前
sdh7941发布了新的文献求助10
9秒前
Tobiuo发布了新的文献求助10
10秒前
tgg发布了新的文献求助10
10秒前
共享精神应助宝宝采纳,获得10
11秒前
11秒前
11秒前
文献一搜就出完成签到,获得积分10
12秒前
DQY发布了新的文献求助10
12秒前
元谷雪发布了新的文献求助10
12秒前
寻道图强应助苹果采纳,获得50
12秒前
12秒前
RA000发布了新的文献求助10
12秒前
12秒前
二狗发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360