计算机科学
人工智能
帧(网络)
光流
事件(粒子物理)
直方图
计算机视觉
异常
相似性(几何)
视频跟踪
模式识别(心理学)
隐马尔可夫模型
运动(音乐)
马尔可夫链
序列(生物学)
对象(语法)
图像(数学)
机器学习
物理
哲学
美学
生物
社会心理学
电信
量子力学
遗传学
心理学
作者
Tian Wang,Meina Qiao,Yingjun Deng,Yi Zhou,Huan Wang,Qi Lyu,Hichem Snoussi
出处
期刊:Optik
[Elsevier]
日期:2018-01-01
卷期号:152: 50-60
被引量:47
标识
DOI:10.1016/j.ijleo.2017.07.064
摘要
Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI