An Imbalance Modified Deep Neural Network With Dynamical Incremental Learning for Chemical Fault Diagnosis

计算机科学 人工神经网络 合并(版本控制) 人工智能 稳健性(进化) 数据挖掘 聚类分析 数据流挖掘 数据流 机器学习 适应性 渐进式学习 电信 生态学 生物化学 化学 情报检索 生物 基因
作者
Zhixin Hu,Peng Jiang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:66 (1): 540-550 被引量:70
标识
DOI:10.1109/tie.2018.2798633
摘要

In this paper, a data-driven fault diagnosis model dealing with chemical imbalanced data streams is investigated. Different faults occur with varied frequencies by continuous arrival in chemical plants, while this issue has been hardly addressed in developing a diagnosis model. A novel incremental imbalance modified deep neural network (incremental-IMDNN) is proposed to promote the fault diagnosis to the imbalanced data stream. The first step in designing the incremental-IMDNN is the employment of an imbalance modified method combined with active learning for the extraction and generation of the most valuable information keeping in view the model feedback. DNN is utilized as a basic diagnosis model to excavate potential information. Then for the continuous arrival of new fault modes, DNN is promoted in an incremental hierarchical way. Unlike the traditional model that trained on a static snapshot of data, this model inherits the existing knowledge and hierarchically expands the diagnosis model by the similarity of faults. Similar faults that are judged by fuzzy clustering merge into a superclass, and every submodel shares the same architecture that is prevalent in previous research, which can be trained in parallel. We validate the performance of the proposed method in a Tennessee Eastman (TE) dataset, and the simulation results indicate that the proposed incremental-IM-DNN is better than the existing methods and possesses significant robustness and adaptability in chemical fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助王叮叮采纳,获得10
刚刚
Yang完成签到,获得积分10
刚刚
小蘑菇应助斯文以蓝采纳,获得10
1秒前
1秒前
yyyyyyy发布了新的文献求助10
1秒前
2秒前
危机的井完成签到,获得积分10
2秒前
科目三应助刘wt采纳,获得10
3秒前
xz完成签到 ,获得积分10
3秒前
4秒前
pebble完成签到,获得积分10
4秒前
梦槐发布了新的文献求助10
5秒前
feike完成签到,获得积分10
6秒前
13771590815完成签到,获得积分10
7秒前
7秒前
MMP完成签到,获得积分10
7秒前
皮老师发布了新的文献求助20
8秒前
坦率的匪应助pengzzZZ采纳,获得10
9秒前
呆呆发布了新的文献求助10
9秒前
田様应助OKOK采纳,获得10
9秒前
10秒前
6666发布了新的文献求助10
10秒前
13秒前
小碗熊完成签到,获得积分10
13秒前
糖糖完成签到 ,获得积分10
13秒前
14秒前
有魅力敏完成签到,获得积分10
16秒前
旺仔发布了新的文献求助10
17秒前
慕青应助DDd采纳,获得10
17秒前
浮浮世世发布了新的文献求助10
18秒前
18秒前
18秒前
糖糖发布了新的文献求助10
19秒前
pengzzZZ完成签到,获得积分10
21秒前
今后应助sylnd126采纳,获得80
22秒前
22秒前
iNk发布了新的文献求助10
22秒前
爆米花应助葳蕤采纳,获得10
22秒前
七慕凉应助zzz采纳,获得10
24秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232