An Imbalance Modified Deep Neural Network With Dynamical Incremental Learning for Chemical Fault Diagnosis

计算机科学 人工神经网络 合并(版本控制) 人工智能 稳健性(进化) 数据挖掘 聚类分析 数据流挖掘 数据流 机器学习 适应性 渐进式学习 基因 生物 电信 化学 生物化学 情报检索 生态学
作者
Zhixin Hu,Peng Jiang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:66 (1): 540-550 被引量:70
标识
DOI:10.1109/tie.2018.2798633
摘要

In this paper, a data-driven fault diagnosis model dealing with chemical imbalanced data streams is investigated. Different faults occur with varied frequencies by continuous arrival in chemical plants, while this issue has been hardly addressed in developing a diagnosis model. A novel incremental imbalance modified deep neural network (incremental-IMDNN) is proposed to promote the fault diagnosis to the imbalanced data stream. The first step in designing the incremental-IMDNN is the employment of an imbalance modified method combined with active learning for the extraction and generation of the most valuable information keeping in view the model feedback. DNN is utilized as a basic diagnosis model to excavate potential information. Then for the continuous arrival of new fault modes, DNN is promoted in an incremental hierarchical way. Unlike the traditional model that trained on a static snapshot of data, this model inherits the existing knowledge and hierarchically expands the diagnosis model by the similarity of faults. Similar faults that are judged by fuzzy clustering merge into a superclass, and every submodel shares the same architecture that is prevalent in previous research, which can be trained in parallel. We validate the performance of the proposed method in a Tennessee Eastman (TE) dataset, and the simulation results indicate that the proposed incremental-IM-DNN is better than the existing methods and possesses significant robustness and adaptability in chemical fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呼叫554完成签到,获得积分20
1秒前
能干水杯发布了新的文献求助10
1秒前
gxyyyy发布了新的文献求助10
1秒前
2秒前
科研通AI6.1应助jackdawjo采纳,获得10
3秒前
ps完成签到,获得积分10
3秒前
DARK发布了新的文献求助10
3秒前
蓝天发布了新的文献求助10
4秒前
1222完成签到,获得积分20
4秒前
邦邦两拳发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
顺顺顺发布了新的文献求助10
6秒前
6秒前
lidan_2008发布了新的文献求助10
6秒前
6秒前
hby完成签到 ,获得积分10
7秒前
刘威发布了新的文献求助10
8秒前
scihub111发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
赘婿应助lrh采纳,获得10
9秒前
9秒前
柳先森完成签到,获得积分10
9秒前
Wang_ZiMo发布了新的文献求助10
9秒前
Jasper应助周琦采纳,获得10
9秒前
Jasper应助ZYFei采纳,获得10
9秒前
斯文败类应助南枝采纳,获得10
9秒前
粗暴的坤发布了新的文献求助10
10秒前
科研通AI6.1应助浪一骞采纳,获得10
10秒前
11秒前
三次方完成签到,获得积分10
11秒前
Hairee发布了新的文献求助10
11秒前
谭沁瑶发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760069
求助须知:如何正确求助?哪些是违规求助? 5523381
关于积分的说明 15396422
捐赠科研通 4896997
什么是DOI,文献DOI怎么找? 2634002
邀请新用户注册赠送积分活动 1582062
关于科研通互助平台的介绍 1537519