An Imbalance Modified Deep Neural Network With Dynamical Incremental Learning for Chemical Fault Diagnosis

计算机科学 人工神经网络 合并(版本控制) 人工智能 稳健性(进化) 数据挖掘 聚类分析 数据流挖掘 数据流 机器学习 适应性 渐进式学习 基因 生物 电信 化学 生物化学 情报检索 生态学
作者
Zhixin Hu,Peng Jiang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:66 (1): 540-550 被引量:70
标识
DOI:10.1109/tie.2018.2798633
摘要

In this paper, a data-driven fault diagnosis model dealing with chemical imbalanced data streams is investigated. Different faults occur with varied frequencies by continuous arrival in chemical plants, while this issue has been hardly addressed in developing a diagnosis model. A novel incremental imbalance modified deep neural network (incremental-IMDNN) is proposed to promote the fault diagnosis to the imbalanced data stream. The first step in designing the incremental-IMDNN is the employment of an imbalance modified method combined with active learning for the extraction and generation of the most valuable information keeping in view the model feedback. DNN is utilized as a basic diagnosis model to excavate potential information. Then for the continuous arrival of new fault modes, DNN is promoted in an incremental hierarchical way. Unlike the traditional model that trained on a static snapshot of data, this model inherits the existing knowledge and hierarchically expands the diagnosis model by the similarity of faults. Similar faults that are judged by fuzzy clustering merge into a superclass, and every submodel shares the same architecture that is prevalent in previous research, which can be trained in parallel. We validate the performance of the proposed method in a Tennessee Eastman (TE) dataset, and the simulation results indicate that the proposed incremental-IM-DNN is better than the existing methods and possesses significant robustness and adaptability in chemical fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄之又玄完成签到,获得积分10
刚刚
三十完成签到 ,获得积分10
1秒前
Orange应助一禅采纳,获得10
2秒前
诛夜完成签到,获得积分10
6秒前
wanci应助L112233采纳,获得10
7秒前
9秒前
自不惊扰完成签到,获得积分10
12秒前
huo应助小王同学搞学术采纳,获得10
12秒前
13秒前
13秒前
jjjjjj发布了新的文献求助10
13秒前
15秒前
姜彦乔发布了新的文献求助10
16秒前
简单点发布了新的文献求助10
16秒前
小芳应助虞无声采纳,获得10
18秒前
19秒前
guoleileity完成签到,获得积分10
20秒前
之组长了发布了新的文献求助30
20秒前
充电宝应助贺知书采纳,获得10
20秒前
简单点完成签到,获得积分10
21秒前
lili发布了新的文献求助10
21秒前
机灵的新波完成签到 ,获得积分10
22秒前
22秒前
J12138发布了新的文献求助10
23秒前
天天快乐应助乔qiqiqiqi采纳,获得10
24秒前
huo应助小王同学搞学术采纳,获得10
30秒前
啊张应助pumpkin采纳,获得10
31秒前
xiaochao完成签到,获得积分10
31秒前
37秒前
ZZZ应助如意的刚采纳,获得10
37秒前
顺利的冰旋完成签到 ,获得积分10
38秒前
LULU完成签到,获得积分10
40秒前
善学以致用应助之组长了采纳,获得30
41秒前
SunGuangkai发布了新的文献求助10
42秒前
所所应助Monster采纳,获得10
42秒前
小王同学搞学术完成签到,获得积分20
43秒前
xinlei2023发布了新的文献求助10
44秒前
散逸层梦游应助李剑鸿采纳,获得50
44秒前
Orange应助阮煜城采纳,获得10
45秒前
精明寒松完成签到 ,获得积分10
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468