Autofocusing in digital holography using deep learning

计算机科学 数字全息术 全息术 人工智能 深度学习 计算机图形学(图像) 计算机视觉 光学 物理
作者
Zhenbo Ren,Zhimin Xu,Edmund Y. Lam
标识
DOI:10.1117/12.2289282
摘要

In digital holography, it is critical to know the distance in order to reconstruct the multi-sectional object. This autofocusing is traditionally solved by reconstructing a stack of in-focus and out-of-focus images and using some focus metric, such as entropy or variance, to calculate the sharpness of each reconstructed image. Then the distance corresponding to the sharpest image is determined as the focal position. This method is effective but computationally demanding and time-consuming. To get an accurate estimation, one has to reconstruct many images. Sometimes after a coarse search, a refinement is needed. To overcome this problem in autofocusing, we propose to use deep learning, i.e., a convolutional neural network (CNN), to solve this problem. Autofocusing is viewed as a classification problem, in which the true distance is transferred as a label. To estimate the distance is equated to labeling a hologram correctly. To train such an algorithm, totally 1000 holograms are captured under the same environment, i.e., exposure time, incident angle, object, except the distance. There are 5 labels corresponding to 5 distances. These data are randomly split into three datasets to train, validate and test a CNN network. Experimental results show that the trained network is capable of predicting the distance without reconstructing or knowing any physical parameters about the setup. The prediction time using this method is far less than traditional autofocusing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu777关注了科研通微信公众号
2秒前
2秒前
兮颜发布了新的文献求助10
5秒前
传奇3应助huzi采纳,获得10
10秒前
FashionBoy应助丰富傥采纳,获得10
12秒前
传奇3应助mimier采纳,获得10
13秒前
舒心的马里奥完成签到,获得积分10
13秒前
16秒前
清沧炽魂发布了新的文献求助10
17秒前
谦让的夜柳完成签到,获得积分10
18秒前
18秒前
华仔应助mianmianyu采纳,获得10
20秒前
白梅发布了新的文献求助10
22秒前
luqqq完成签到,获得积分10
22秒前
23秒前
yu777发布了新的文献求助10
23秒前
Peter_Zhu发布了新的文献求助10
23秒前
爆米花应助魔幻小蘑菇采纳,获得10
25秒前
scscsd完成签到,获得积分10
26秒前
自信的九娘完成签到,获得积分10
26秒前
zmy发布了新的文献求助10
27秒前
华仔应助舒心的马里奥采纳,获得10
27秒前
27秒前
11完成签到,获得积分20
28秒前
菠萝菠萝哒应助生动千风采纳,获得10
29秒前
红领巾klj完成签到 ,获得积分10
29秒前
29秒前
31秒前
31秒前
33秒前
34秒前
wuji发布了新的文献求助10
34秒前
mianmianyu发布了新的文献求助10
35秒前
燕尔蓝发布了新的文献求助10
36秒前
终点站发布了新的文献求助10
36秒前
37秒前
37秒前
AAAA完成签到,获得积分10
37秒前
yahonyoyoyo发布了新的文献求助20
37秒前
希望天下0贩的0应助djbj2022采纳,获得10
39秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380707
求助须知:如何正确求助?哪些是违规求助? 2995854
关于积分的说明 8765777
捐赠科研通 2680904
什么是DOI,文献DOI怎么找? 1468245
科研通“疑难数据库(出版商)”最低求助积分说明 678909
邀请新用户注册赠送积分活动 670951