The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches.

人工智能 深度学习 计算机科学 机器学习 循环神经网络 卷积神经网络 深信不疑网络 领域(数学) 水准点(测量) 强化学习 人工神经网络 数学 大地测量学 纯数学 地理
作者
Zahangir Alom,Tarek M. Taha,Christopher Yakopcic,Stefan Westberg,Paheding Sidike,Mst Shamima Nasrin,Brian C. Van Essen,Abdul Ahad S. Awwal,Vijayan K. Asari
出处
期刊:Cornell University - arXiv 被引量:68
摘要

Deep learning has demonstrated tremendous success in variety of application domains in the past few years. This new field of machine learning has been growing rapidly and applied in most of the application domains with some new modalities of applications, which helps to open new opportunity. There are different methods have been proposed on different category of learning approaches, which includes supervised, semi-supervised and un-supervised learning. The experimental results show state-of-the-art performance of deep learning over traditional machine learning approaches in the field of Image Processing, Computer Vision, Speech Recognition, Machine Translation, Art, Medical imaging, Medical information processing, Robotics and control, Bio-informatics, Natural Language Processing (NLP), Cyber security, and many more. This report presents a brief survey on development of DL approaches, including Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) including Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). In addition, we have included recent development of proposed advanced variant DL techniques based on the mentioned DL approaches. Furthermore, DL approaches have explored and evaluated in different application domains are also included in this survey. We have also comprised recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys have published on Deep Learning in Neural Networks [1, 38] and a survey on RL [234]. However, those papers have not discussed the individual advanced techniques for training large scale deep learning models and the recently developed method of generative models [1].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junsir发布了新的文献求助10
1秒前
akber123发布了新的文献求助10
3秒前
脑洞疼应助研友_ZbPmmL采纳,获得10
3秒前
英姑应助mianmianyu采纳,获得10
5秒前
Dryuwei发布了新的文献求助30
5秒前
单薄的如之完成签到,获得积分10
6秒前
852应助chHe采纳,获得10
6秒前
1011完成签到,获得积分10
7秒前
赖建琛完成签到 ,获得积分10
8秒前
10秒前
谢谢sang发布了新的文献求助10
11秒前
13秒前
田様应助LYZSh采纳,获得10
14秒前
14秒前
深情安青应助小青采纳,获得10
15秒前
luu发布了新的文献求助10
15秒前
akber123完成签到,获得积分10
15秒前
温暖汽车发布了新的文献求助10
16秒前
17秒前
东方幼旋完成签到,获得积分10
19秒前
19秒前
jasmine发布了新的文献求助10
19秒前
20秒前
zjz发布了新的文献求助10
21秒前
酷波er应助壹肆伍采纳,获得10
22秒前
23秒前
25秒前
周杰伦4100发布了新的文献求助10
25秒前
tanhaili完成签到,获得积分10
26秒前
研友_ZbPmmL发布了新的文献求助10
26秒前
zjz完成签到,获得积分10
27秒前
笑笑发布了新的文献求助10
28秒前
鬼才之眼完成签到,获得积分10
29秒前
30秒前
31秒前
向响响发布了新的文献求助10
32秒前
不懂完成签到,获得积分10
33秒前
34秒前
99giddens举报ured求助涉嫌违规
34秒前
在水一方应助lee采纳,获得10
35秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3113000
求助须知:如何正确求助?哪些是违规求助? 2763371
关于积分的说明 7674142
捐赠科研通 2418596
什么是DOI,文献DOI怎么找? 1283823
科研通“疑难数据库(出版商)”最低求助积分说明 619461
版权声明 599605