亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain

二元分析 公共交通 地理 人口普查 自行车 运输工程 计算机科学 医学 环境卫生 工程类 人口 机器学习 考古
作者
Rahul Goel,Leandro Martin Totaro Garcia,Anna Goodman,Rob Johnson,Rachel Aldred,Manoradhan Murugesan,Søren Brage,Kavi Bhalla,James Woodcock
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:13 (5): e0196521-e0196521 被引量:84
标识
DOI:10.1371/journal.pone.0196521
摘要

Background Street imagery is a promising and growing big data source providing current and historical images in more than 100 countries. Studies have reported using this data to audit road infrastructure and other built environment features. Here we explore a novel application, using Google Street View (GSV) to predict travel patterns at the city level. Methods We sampled 34 cities in Great Britain. In each city, we accessed 2000 GSV images from 1000 random locations. We selected archived images from time periods overlapping with the 2011 Census and the 2011–2013 Active People Survey (APS). We manually annotated the images into seven categories of road users. We developed regression models with the counts of images of road users as predictors. The outcomes included Census-reported commute shares of four modes (combined walking plus public transport, cycling, motorcycle, and car), as well as APS-reported past-month participation in walking and cycling. Results We found high correlations between GSV counts of cyclists (‘GSV-cyclists’) and cycle commute mode share (r = 0.92)/past-month cycling (r = 0.90). Likewise, GSV-pedestrians was moderately correlated with past-month walking for transport (r = 0.46), GSV-motorcycles was moderately correlated with commute share of motorcycles (r = 0.44), and GSV-buses was highly correlated with commute share of walking plus public transport (r = 0.81). GSV-car was not correlated with car commute mode share (r = –0.12). However, in multivariable regression models, all outcomes were predicted well, except past-month walking. The prediction performance was measured using cross-validation analyses. GSV-buses and GSV-cyclists are the strongest predictors for most outcomes. Conclusions GSV images are a promising new big data source to predict urban mobility patterns. Predictive power was the greatest for those modes that varied the most (cycle and bus). With its ability to identify mode of travel and capture street activity often excluded in routinely carried out surveys, GSV has the potential to be complementary to new and traditional data. With half the world’s population covered by street imagery, and with up to 10 years historical data available in GSV, further testing across multiple settings is warranted both for cross-sectional and longitudinal assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kristine完成签到 ,获得积分10
刚刚
5秒前
余闻问发布了新的文献求助10
7秒前
zoiaii完成签到 ,获得积分10
10秒前
张志超发布了新的文献求助10
10秒前
mmyhn发布了新的文献求助10
13秒前
Metx完成签到 ,获得积分10
14秒前
18秒前
科研小菜鸟完成签到,获得积分10
24秒前
28秒前
林狗完成签到 ,获得积分10
29秒前
30秒前
H_W完成签到 ,获得积分10
31秒前
yuanyuan发布了新的文献求助10
32秒前
科研通AI6应助科研小菜鸟采纳,获得30
39秒前
科研通AI2S应助丁又菡采纳,获得50
40秒前
42秒前
YAKI完成签到,获得积分10
45秒前
丰富青雪发布了新的文献求助10
46秒前
搜集达人应助Seeking采纳,获得10
47秒前
科研通AI6应助一个西藏采纳,获得10
47秒前
思源应助勇敢且鲁班采纳,获得10
49秒前
彭于晏应助Zenia采纳,获得10
55秒前
清爽的又夏完成签到,获得积分10
56秒前
56秒前
情怀应助YAKI采纳,获得10
58秒前
59秒前
英姑应助清爽的又夏采纳,获得10
1分钟前
寒冷河马完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助yuanyuan采纳,获得10
1分钟前
任性的水风完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898