亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain

二元分析 公共交通 地理 人口普查 自行车 运输工程 计算机科学 医学 环境卫生 工程类 人口 机器学习 考古
作者
Rahul Goel,Leandro Martin Totaro Garcia,Anna Goodman,Rob Johnson,Rachel Aldred,Manoradhan Murugesan,Søren Brage,Kavi Bhalla,James Woodcock
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:13 (5): e0196521-e0196521 被引量:84
标识
DOI:10.1371/journal.pone.0196521
摘要

Background Street imagery is a promising and growing big data source providing current and historical images in more than 100 countries. Studies have reported using this data to audit road infrastructure and other built environment features. Here we explore a novel application, using Google Street View (GSV) to predict travel patterns at the city level. Methods We sampled 34 cities in Great Britain. In each city, we accessed 2000 GSV images from 1000 random locations. We selected archived images from time periods overlapping with the 2011 Census and the 2011–2013 Active People Survey (APS). We manually annotated the images into seven categories of road users. We developed regression models with the counts of images of road users as predictors. The outcomes included Census-reported commute shares of four modes (combined walking plus public transport, cycling, motorcycle, and car), as well as APS-reported past-month participation in walking and cycling. Results We found high correlations between GSV counts of cyclists (‘GSV-cyclists’) and cycle commute mode share (r = 0.92)/past-month cycling (r = 0.90). Likewise, GSV-pedestrians was moderately correlated with past-month walking for transport (r = 0.46), GSV-motorcycles was moderately correlated with commute share of motorcycles (r = 0.44), and GSV-buses was highly correlated with commute share of walking plus public transport (r = 0.81). GSV-car was not correlated with car commute mode share (r = –0.12). However, in multivariable regression models, all outcomes were predicted well, except past-month walking. The prediction performance was measured using cross-validation analyses. GSV-buses and GSV-cyclists are the strongest predictors for most outcomes. Conclusions GSV images are a promising new big data source to predict urban mobility patterns. Predictive power was the greatest for those modes that varied the most (cycle and bus). With its ability to identify mode of travel and capture street activity often excluded in routinely carried out surveys, GSV has the potential to be complementary to new and traditional data. With half the world’s population covered by street imagery, and with up to 10 years historical data available in GSV, further testing across multiple settings is warranted both for cross-sectional and longitudinal assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
邹醉蓝完成签到,获得积分10
10秒前
28秒前
33秒前
hank发布了新的文献求助10
35秒前
大气寄松发布了新的文献求助10
38秒前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
东海帝王发布了新的文献求助10
1分钟前
WWXWWX完成签到,获得积分10
1分钟前
hank完成签到,获得积分10
1分钟前
嘲风完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助WWXWWX采纳,获得10
1分钟前
所所应助WWXWWX采纳,获得30
1分钟前
深情安青应助WWXWWX采纳,获得10
1分钟前
随机子应助lourahan采纳,获得10
1分钟前
一杯茶应助lourahan采纳,获得10
2分钟前
2分钟前
嘲风发布了新的文献求助10
2分钟前
一杯茶应助东海帝王采纳,获得30
2分钟前
ala完成签到,获得积分10
2分钟前
3分钟前
coral发布了新的文献求助10
3分钟前
3分钟前
coral完成签到,获得积分10
3分钟前
bukeshuo发布了新的文献求助10
3分钟前
3分钟前
慕青应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
lourahan发布了新的文献求助10
8分钟前
8分钟前
酷波er应助bukeshuo采纳,获得10
8分钟前
lourahan发布了新的文献求助10
8分钟前
NexusExplorer应助科研通管家采纳,获得10
9分钟前
方琼燕完成签到 ,获得积分10
10分钟前
10分钟前
WWXWWX发布了新的文献求助10
10分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921864
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438