卷积神经网络
计算机科学
人工智能
频道(广播)
计算机视觉
图像(数学)
传输(电信)
滤波器(信号处理)
光散射
图像增强
接头(建筑物)
模式识别(心理学)
散射
光学
物理
电信
工程类
建筑工程
作者
Tao Li,Chuang Zhu,Jiawen Song,Tao Lu,Huizhu Jia,Xiaodong Xie
标识
DOI:10.1109/icip.2017.8296876
摘要
In this paper, we propose a joint framework to enhance images under low-light conditions. First, a convolutional neural network (CNN) based architecture is proposed to denoise low-light images. Then, based on atmosphere scattering model, we introduce a low-light model to enhance image contrast. In our low-light model, we propose a simple but effective image prior, bright channel prior, to estimate the transmission parameter; besides, an effective filter is designed to adaptively estimate environment light in different image areas. Experimental results demonstrate that our method achieves superior performance over other methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI