催化作用
水溶液
化学
氧化物
密度泛函理论
无机化学
二氧化碳电化学还原
吸附
八面体
选择性
二氧化碳
光化学
计算化学
物理化学
一氧化碳
结晶学
有机化学
晶体结构
作者
Piaoping Yang,Zhi‐Jian Zhao,Xiaoxia Chang,Rentao Mu,Shenjun Zha,Gong Zhang,Jinlong Gong
标识
DOI:10.1002/anie.201801463
摘要
Carbon dioxide (CO2 ) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu2 O) is a promising catalyst for CO2 reduction as it can convert CO2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu2 O remains under debate because of the complex surface structure of Cu2 O under reducing conditions, leading to limited guidance in designing improved Cu2 O catalysts. This paper describes the functionality of surface-bonded hydroxy groups on partially reduced Cu2 O(111) for the CO2 reduction reaction (CO2 RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO2 RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO2 RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination-unsaturated Cu (CuCUS ) sites stabilizes surface-adsorbed COOH*, which is a key intermediate during the CO2 RR. Moreover, the CO2 RR was evaluated over Cu2 O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu2 O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO2 RR and suppress the HER.
科研通智能强力驱动
Strongly Powered by AbleSci AI