DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series

异常检测 计算机科学 系列(地层学) 异常(物理) 人工智能 背景(考古学) 时间序列 深度学习 卷积神经网络 机器学习 数据挖掘 模式识别(心理学) 凝聚态物理 生物 物理 古生物学
作者
Mohsin Munir,Shoaib Ahmed Siddiqui,Andreas Dengel,Sheraz Ahmed
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 1991-2005 被引量:418
标识
DOI:10.1109/access.2018.2886457
摘要

Traditional distance and density-based anomaly detection techniques are unable to detect periodic and seasonality related point anomalies which occur commonly in streaming data, leaving a big gap in time series anomaly detection in the current era of the IoT. To address this problem, we present a novel deep learning-based anomaly detection approach (DeepAnT) for time series data, which is equally applicable to the non-streaming cases. DeepAnT is capable of detecting a wide range of anomalies, i.e., point anomalies, contextual anomalies, and discords in time series data. In contrast to the anomaly detection methods where anomalies are learned, DeepAnT uses unlabeled data to capture and learn the data distribution that is used to forecast the normal behavior of a time series. DeepAnT consists of two modules: time series predictor and anomaly detector. The time series predictor module uses deep convolutional neural network (CNN) to predict the next time stamp on the defined horizon. This module takes a window of time series (used as a context) and attempts to predict the next time stamp. The predicted value is then passed to the anomaly detector module, which is responsible for tagging the corresponding time stamp as normal or abnormal. DeepAnT can be trained even without removing the anomalies from the given data set. Generally, in deep learning-based approaches, a lot of data are required to train a model. Whereas in DeepAnT, a model can be trained on relatively small data set while achieving good generalization capabilities due to the effective parameter sharing of the CNN. As the anomaly detection in DeepAnT is unsupervised, it does not rely on anomaly labels at the time of model generation. Therefore, this approach can be directly applied to real-life scenarios where it is practically impossible to label a big stream of data coming from heterogeneous sensors comprising of both normal as well as anomalous points. We have performed a detailed evaluation of 15 algorithms on 10 anomaly detection benchmarks, which contain a total of 433 real and synthetic time series. Experiments show that DeepAnT outperforms the state-of-the-art anomaly detection methods in most of the cases, while performing on par with others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZOEzoe发布了新的文献求助30
2秒前
研友_VZG7GZ应助苍耳采纳,获得30
3秒前
3秒前
yangyang发布了新的文献求助10
3秒前
tiasn关注了科研通微信公众号
3秒前
Unshouable发布了新的文献求助10
3秒前
如意冰棍完成签到 ,获得积分10
3秒前
4秒前
4秒前
OO圈圈发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
保持好心情完成签到 ,获得积分10
5秒前
小盆呐完成签到,获得积分10
7秒前
Accept关注了科研通微信公众号
7秒前
实验大牛完成签到,获得积分10
7秒前
SYLH应助嗯嗯采纳,获得30
7秒前
莫里完成签到,获得积分10
7秒前
独特的向日葵完成签到,获得积分10
7秒前
lz发布了新的文献求助10
8秒前
Enzo发布了新的文献求助10
8秒前
8秒前
菠菜发布了新的文献求助200
8秒前
格物致知发布了新的文献求助10
9秒前
动听锦程发布了新的文献求助10
9秒前
10秒前
wdy111应助左丘以云采纳,获得20
10秒前
10秒前
10秒前
糊辣鱼完成签到 ,获得积分10
11秒前
SYLH应助Ridley采纳,获得10
11秒前
12秒前
TWOTP完成签到,获得积分10
12秒前
Asystasia7完成签到,获得积分10
12秒前
12秒前
CATH发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
小蘑菇应助傻傻的夜柳采纳,获得30
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653