DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series

异常检测 计算机科学 系列(地层学) 异常(物理) 人工智能 背景(考古学) 时间序列 深度学习 卷积神经网络 机器学习 数据挖掘 模式识别(心理学) 凝聚态物理 生物 物理 古生物学
作者
Mohsin Munir,Shoaib Ahmed Siddiqui,Andreas Dengel,Sheraz Ahmed
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 1991-2005 被引量:418
标识
DOI:10.1109/access.2018.2886457
摘要

Traditional distance and density-based anomaly detection techniques are unable to detect periodic and seasonality related point anomalies which occur commonly in streaming data, leaving a big gap in time series anomaly detection in the current era of the IoT. To address this problem, we present a novel deep learning-based anomaly detection approach (DeepAnT) for time series data, which is equally applicable to the non-streaming cases. DeepAnT is capable of detecting a wide range of anomalies, i.e., point anomalies, contextual anomalies, and discords in time series data. In contrast to the anomaly detection methods where anomalies are learned, DeepAnT uses unlabeled data to capture and learn the data distribution that is used to forecast the normal behavior of a time series. DeepAnT consists of two modules: time series predictor and anomaly detector. The time series predictor module uses deep convolutional neural network (CNN) to predict the next time stamp on the defined horizon. This module takes a window of time series (used as a context) and attempts to predict the next time stamp. The predicted value is then passed to the anomaly detector module, which is responsible for tagging the corresponding time stamp as normal or abnormal. DeepAnT can be trained even without removing the anomalies from the given data set. Generally, in deep learning-based approaches, a lot of data are required to train a model. Whereas in DeepAnT, a model can be trained on relatively small data set while achieving good generalization capabilities due to the effective parameter sharing of the CNN. As the anomaly detection in DeepAnT is unsupervised, it does not rely on anomaly labels at the time of model generation. Therefore, this approach can be directly applied to real-life scenarios where it is practically impossible to label a big stream of data coming from heterogeneous sensors comprising of both normal as well as anomalous points. We have performed a detailed evaluation of 15 algorithms on 10 anomaly detection benchmarks, which contain a total of 433 real and synthetic time series. Experiments show that DeepAnT outperforms the state-of-the-art anomaly detection methods in most of the cases, while performing on par with others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hsduwguy完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
rrjl完成签到,获得积分10
3秒前
siliang发布了新的文献求助10
5秒前
贺靖巧发布了新的文献求助10
5秒前
5秒前
6秒前
张三发布了新的文献求助10
6秒前
7秒前
7秒前
Gergeo应助半分青蓝采纳,获得20
8秒前
迷路雁凡完成签到,获得积分20
8秒前
共享精神应助清脆的书桃采纳,获得10
8秒前
脑洞疼应助yycc采纳,获得10
9秒前
indigo完成签到,获得积分10
9秒前
李婷婷发布了新的文献求助10
10秒前
x笑一发布了新的文献求助10
11秒前
郭翔发布了新的文献求助10
11秒前
青阳发布了新的文献求助10
11秒前
gy发布了新的文献求助20
12秒前
13秒前
无花果应助黑巧菠萝包采纳,获得10
13秒前
贺靖巧完成签到,获得积分10
15秒前
独特安阳发布了新的文献求助10
15秒前
林沐发布了新的文献求助10
16秒前
16秒前
时567完成签到,获得积分10
16秒前
16秒前
大模型应助ColdAsYou采纳,获得10
17秒前
18秒前
lxf发布了新的文献求助10
18秒前
咪呀发布了新的文献求助10
19秒前
萍萍子发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助九点一定起采纳,获得10
22秒前
星辰大海应助Singularity采纳,获得10
22秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3093988
求助须知:如何正确求助?哪些是违规求助? 2745878
关于积分的说明 7587633
捐赠科研通 2397197
什么是DOI,文献DOI怎么找? 1271798
科研通“疑难数据库(出版商)”最低求助积分说明 615272
版权声明 598844