DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series

异常检测 计算机科学 系列(地层学) 异常(物理) 人工智能 背景(考古学) 时间序列 深度学习 卷积神经网络 机器学习 数据挖掘 模式识别(心理学) 凝聚态物理 生物 物理 古生物学
作者
Mohsin Munir,Shoaib Ahmed Siddiqui,Andreas Dengel,Sheraz Ahmed
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 1991-2005 被引量:418
标识
DOI:10.1109/access.2018.2886457
摘要

Traditional distance and density-based anomaly detection techniques are unable to detect periodic and seasonality related point anomalies which occur commonly in streaming data, leaving a big gap in time series anomaly detection in the current era of the IoT. To address this problem, we present a novel deep learning-based anomaly detection approach (DeepAnT) for time series data, which is equally applicable to the non-streaming cases. DeepAnT is capable of detecting a wide range of anomalies, i.e., point anomalies, contextual anomalies, and discords in time series data. In contrast to the anomaly detection methods where anomalies are learned, DeepAnT uses unlabeled data to capture and learn the data distribution that is used to forecast the normal behavior of a time series. DeepAnT consists of two modules: time series predictor and anomaly detector. The time series predictor module uses deep convolutional neural network (CNN) to predict the next time stamp on the defined horizon. This module takes a window of time series (used as a context) and attempts to predict the next time stamp. The predicted value is then passed to the anomaly detector module, which is responsible for tagging the corresponding time stamp as normal or abnormal. DeepAnT can be trained even without removing the anomalies from the given data set. Generally, in deep learning-based approaches, a lot of data are required to train a model. Whereas in DeepAnT, a model can be trained on relatively small data set while achieving good generalization capabilities due to the effective parameter sharing of the CNN. As the anomaly detection in DeepAnT is unsupervised, it does not rely on anomaly labels at the time of model generation. Therefore, this approach can be directly applied to real-life scenarios where it is practically impossible to label a big stream of data coming from heterogeneous sensors comprising of both normal as well as anomalous points. We have performed a detailed evaluation of 15 algorithms on 10 anomaly detection benchmarks, which contain a total of 433 real and synthetic time series. Experiments show that DeepAnT outperforms the state-of-the-art anomaly detection methods in most of the cases, while performing on par with others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木仓完成签到,获得积分10
2秒前
davidwuran发布了新的文献求助10
2秒前
3秒前
4秒前
科研通AI5应助HX采纳,获得10
4秒前
5秒前
5秒前
5秒前
科研通AI6应助安好元素采纳,获得10
6秒前
sweetrumors发布了新的文献求助10
7秒前
8秒前
9秒前
fishnewone发布了新的文献求助10
10秒前
健忘捕发布了新的文献求助10
10秒前
10秒前
Jasper应助昨夜書采纳,获得10
10秒前
浮游应助周em12_采纳,获得10
12秒前
davidwuran完成签到,获得积分20
12秒前
closeboy完成签到 ,获得积分10
12秒前
nan应助文静修杰采纳,获得10
13秒前
HX发布了新的文献求助10
14秒前
安赛虫发布了新的文献求助10
14秒前
隐形曼青应助小闵采纳,获得10
15秒前
倪妮发布了新的文献求助10
15秒前
惊吓小狗完成签到,获得积分10
15秒前
15秒前
小冉发布了新的文献求助10
16秒前
17秒前
18秒前
充电宝应助cencen采纳,获得10
18秒前
18秒前
dreamplayer完成签到,获得积分10
19秒前
充电宝应助安赛虫采纳,获得10
20秒前
An完成签到,获得积分10
20秒前
20秒前
04711发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206671
求助须知:如何正确求助?哪些是违规求助? 4384965
关于积分的说明 13655394
捐赠科研通 4243406
什么是DOI,文献DOI怎么找? 2328064
邀请新用户注册赠送积分活动 1325747
关于科研通互助平台的介绍 1277928