亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

StackCBPred: A stacking based prediction of protein-carbohydrate binding sites from sequence

碳水化合物 化学 计算生物学 堆积 结合位点 序列(生物学) 结合选择性 生物化学 生物 有机化学
作者
Suraj Gattani,Avdesh Mishra,Md Tamjidul Hoque
出处
期刊:Carbohydrate Research [Elsevier BV]
卷期号:486: 107857-107857 被引量:32
标识
DOI:10.1016/j.carres.2019.107857
摘要

Carbohydrate-binding proteins play vital roles in many important biological processes. The study of these protein-carbohydrate interactions, at residue level, is useful in treating many critical diseases. Analyzing the local sequential environments of the binding and non-binding regions to predict the protein-carbohydrate binding sites is one of the challenging problems in molecular and computational biology. Existing experimental methods for identifying protein-carbohydrate binding sites are laborious and expensive. Thus, prediction of such binding sites, directly from sequences, using computational methods, can be useful to fast annotate the binding sites and guide the experimental process. Because the number of carbohydrate-binding residues is significantly lower than the number of non-carbohydrate-binding residues, most of the methods developed for the prediction of protein-carbohydrate binding sites are biased towards over predicting the negative class (or non-carbohydrate-binding). Here, we propose a balanced predictor, called StackCBPred, which utilizes features, extracted from evolution-driven sequence profile, called the position-specific scoring matrix (PSSM) and several predicted structural properties of amino acids to effectively train a Stacking-based machine learning method for the accurate prediction of protein-carbohydrate binding sites (https://bmll.cs.uno.edu/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
14秒前
27秒前
量子星尘发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
38秒前
41秒前
43秒前
坚强白凝发布了新的文献求助10
46秒前
JamesPei应助坚强白凝采纳,获得10
54秒前
量子星尘发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
jia完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
繁荣的心情完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188