Wind power generation: A review and a research agenda

风力发电 可再生能源 温室气体 水力发电 发电 环境经济学 计算机科学 过程(计算) 全球变暖 气候变化 功率(物理) 工程类 经济 操作系统 物理 电气工程 生物 量子力学 生态学
作者
Soraida Aguilar,Gheisa Roberta Telles Esteves,Paula Maçaira,Bruno Quaresma Bastos,Fernando Luiz Cyrino Oliveira,Reinaldo Castro Souza
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:218: 850-870 被引量:201
标识
DOI:10.1016/j.jclepro.2019.02.015
摘要

The use of renewable energy resources, especially wind power, is receiving strong attention from governments and private institutions, since it is considered one of the best and most competitive alternative energy sources in the current energy transition that many countries around the world are adopting. Wind power also plays an important role by reducing greenhouse gas emissions and thus attenuating global warming. Another contribution of wind power generation is that it allows countries to diversify their energy mix, which is especially important in countries where hydropower is a large component. The expansion of wind power generation requires a robust understanding of its variability and thus how to reduce uncertainties associated with wind power output. Technical approaches such as simulation and forecasting provide better information to support the decision-making process. This paper provides an overview of how the analysis of wind speed/energy has evolved over the last 30 years for decision-making processes. For this, we employed an innovative and reproducible literature review approach called Systematic Literature Network Analysis (SLNA). The SLNA was performed considering 145 selected articles from peer-reviewed journals and through them it was possible to identify the most representative approaches and future trends. Through this analysis, we identified that in the past 10 years, studies have focused on the use of Measure-Correlate-Predict (MCP) models, first using linear models and then improving them by applying density or kernel functions, as well as studies with alternative techniques, like neural networks or other hybrid models. An important finding is that most of the methods aim to assess wind power generation potential of target sites, and, in recent years the most used approaches are MCP and artificial neural network methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的书白完成签到,获得积分10
2秒前
4秒前
星辰大海应助你好世界采纳,获得10
5秒前
小欣发布了新的文献求助10
5秒前
雷家完成签到,获得积分10
5秒前
qifeng完成签到,获得积分10
6秒前
7秒前
7秒前
实验耗材发布了新的文献求助10
9秒前
天机鲁比完成签到,获得积分20
14秒前
zly发布了新的文献求助10
14秒前
小欣完成签到,获得积分10
14秒前
15秒前
16秒前
20秒前
学术laji完成签到 ,获得积分10
21秒前
jbear发布了新的文献求助10
22秒前
22秒前
zly完成签到,获得积分10
26秒前
天机鲁比发布了新的文献求助10
27秒前
思源应助阿童木采纳,获得10
28秒前
33秒前
缪尔岚完成签到,获得积分10
36秒前
37秒前
张张发布了新的文献求助10
39秒前
JIA发布了新的文献求助10
41秒前
42秒前
脑洞疼应助Dkakxncnsksl采纳,获得10
43秒前
44秒前
snnn完成签到,获得积分10
46秒前
WXR完成签到 ,获得积分10
47秒前
钟叉烧发布了新的文献求助10
47秒前
所所应助科研通管家采纳,获得10
47秒前
Yifan2024应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
善学以致用应助qiaomingixn采纳,获得10
48秒前
49秒前
Lucas应助吐司采纳,获得10
50秒前
酷波er应助JIA采纳,获得10
50秒前
sjyu1985发布了新的文献求助10
54秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
Field Guide to Insects of South Africa 660
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380506
求助须知:如何正确求助?哪些是违规求助? 2995682
关于积分的说明 8764876
捐赠科研通 2680694
什么是DOI,文献DOI怎么找? 1468100
科研通“疑难数据库(出版商)”最低求助积分说明 678880
邀请新用户注册赠送积分活动 670937