Wind power generation: A review and a research agenda

风力发电 可再生能源 温室气体 水力发电 发电 环境经济学 计算机科学 过程(计算) 全球变暖 气候变化 功率(物理) 工程类 经济 操作系统 物理 电气工程 生物 量子力学 生态学
作者
Soraida Aguilar,Gheisa Roberta Telles Esteves,Paula Maçaira,Bruno Quaresma Bastos,Fernando Luiz Cyrino Oliveira,Reinaldo Castro Souza
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:218: 850-870 被引量:201
标识
DOI:10.1016/j.jclepro.2019.02.015
摘要

The use of renewable energy resources, especially wind power, is receiving strong attention from governments and private institutions, since it is considered one of the best and most competitive alternative energy sources in the current energy transition that many countries around the world are adopting. Wind power also plays an important role by reducing greenhouse gas emissions and thus attenuating global warming. Another contribution of wind power generation is that it allows countries to diversify their energy mix, which is especially important in countries where hydropower is a large component. The expansion of wind power generation requires a robust understanding of its variability and thus how to reduce uncertainties associated with wind power output. Technical approaches such as simulation and forecasting provide better information to support the decision-making process. This paper provides an overview of how the analysis of wind speed/energy has evolved over the last 30 years for decision-making processes. For this, we employed an innovative and reproducible literature review approach called Systematic Literature Network Analysis (SLNA). The SLNA was performed considering 145 selected articles from peer-reviewed journals and through them it was possible to identify the most representative approaches and future trends. Through this analysis, we identified that in the past 10 years, studies have focused on the use of Measure-Correlate-Predict (MCP) models, first using linear models and then improving them by applying density or kernel functions, as well as studies with alternative techniques, like neural networks or other hybrid models. An important finding is that most of the methods aim to assess wind power generation potential of target sites, and, in recent years the most used approaches are MCP and artificial neural network methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nanpasen发布了新的文献求助10
1秒前
骆怀薇完成签到 ,获得积分10
2秒前
Wink14551发布了新的文献求助10
2秒前
hf发布了新的文献求助30
3秒前
zxvcbnm完成签到,获得积分10
3秒前
fanhuam发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
称心寒松发布了新的文献求助10
6秒前
NexusExplorer应助MHSCS采纳,获得10
6秒前
早上好完成签到,获得积分10
6秒前
阳光向秋发布了新的文献求助10
7秒前
8秒前
柠檬发布了新的文献求助10
10秒前
10秒前
慕青应助121采纳,获得10
10秒前
bbdx发布了新的文献求助10
12秒前
12秒前
14秒前
WYP完成签到 ,获得积分10
14秒前
云天明发布了新的文献求助10
14秒前
诚心的初露完成签到,获得积分10
16秒前
yyyt完成签到,获得积分10
16秒前
秤子发布了新的文献求助10
16秒前
wss关闭了wss文献求助
17秒前
脑洞疼应助叽叽卟卟采纳,获得10
17秒前
善学以致用应助Will采纳,获得10
20秒前
xiaofeiyan发布了新的文献求助10
20秒前
糖果应助wangmomo1983采纳,获得10
21秒前
彩色映雁发布了新的文献求助10
21秒前
大个应助牛牛的我采纳,获得10
23秒前
xixi完成签到,获得积分10
23秒前
zzzz发布了新的文献求助10
23秒前
zy完成签到,获得积分10
25秒前
hf完成签到,获得积分10
25秒前
26秒前
李白完成签到,获得积分10
27秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427