下胚轴
磷酸化
油菜素内酯
脱磷
黄化
ATP酶
生物化学
油菜素甾醇
光形态发生
细胞生物学
苏氨酸
磷酸酶
拟南芥
生物
化学
突变体
丝氨酸
植物
酶
基因
植物生长
作者
Anzu Minami,Koji Takahashi,Shin‐ichiro Inoue,Yutaka Tada,Toshinori Kinoshita
摘要
Brassinosteroids (BRs) are steroid phytohormones that regulate plant growth and development, and promote cell elongation at least in part via the acid-growth process. BRs have been suggested to induce cell elongation by the activating plasma membrane (PM) H+-ATPase. However, the mechanism by which BRs activate PM H+-ATPase has not been clarified. In this study, we investigated the effects of BR on hypocotyl elongation and the phosphorylation status of a penultimate residue, threonine, of PM H+-ATPase, which affects the activation, in the etiolated seedlings of Arabidopsis thaliana. Brassinolide (BL), an active endogenous BR, induced hypocotyl elongation, phosphorylation of the penultimate, threonine residue of PM H+-ATPase, and binding of the 14-3-3 protein to PM H+-ATPase in the endogenous BR-depleted seedlings. Changes in both BL-induced elongation and phosphorylation of PM H+-ATPase showed similar concentration dependency. BL did not induce phosphorylation of PM H+-ATPase in the BR receptor mutant bri1-6. In contrast, bikinin, a specific inhibitor of BIN2 that acts as a negative regulator of BR signaling, induced its phosphorylation. Furthermore, BL accumulated the transcripts of SMALL AUXIN UP RNA 9 (SAUR9) and SAUR19, which suppress dephosphorylation of the PM H+-ATPase penultimate residue by inhibiting D-clade type 2C protein phosphatase in the hypocotyls of etiolated seedlings. From these results, we conclude that BL-induced phosphorylation of PM H+-ATPase penultimate residue is mediated via the BRI1-BIN2 signaling pathway, together with the accumulation of SAURs during hypocotyl elongation.
科研通智能强力驱动
Strongly Powered by AbleSci AI