Fully Automated Echocardiogram Interpretation in Clinical Practice

医学 射血分数 分割 心脏成像 卷积神经网络 人工智能 心脏病学 冲程容积 胸骨旁线 放射科 内科学 计算机科学 心力衰竭
作者
Jeffrey Zhang,Sravani Gajjala,Pulkit Agrawal,Geoffrey H. Tison,Laura A. Hallock,Lauren Beussink‐Nelson,Mats Christian Højbjerg Lassen,Eugene Fan,Mandar A. Aras,ChaRandle Jordan,Kirsten E. Fleischmann,Michelle Melisko,Atif Qasim,Sanjiv J. Shah,Ruzena Bajcsy,Rahul C. Deo
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:138 (16): 1623-1635 被引量:696
标识
DOI:10.1161/circulationaha.118.034338
摘要

Automated cardiac image interpretation has the potential to transform clinical practice in multiple ways, including enabling serial assessment of cardiac function by nonexperts in primary care and rural settings. We hypothesized that advances in computer vision could enable building a fully automated, scalable analysis pipeline for echocardiogram interpretation, including (1) view identification, (2) image segmentation, (3) quantification of structure and function, and (4) disease detection.Using 14 035 echocardiograms spanning a 10-year period, we trained and evaluated convolutional neural network models for multiple tasks, including automated identification of 23 viewpoints and segmentation of cardiac chambers across 5 common views. The segmentation output was used to quantify chamber volumes and left ventricular mass, determine ejection fraction, and facilitate automated determination of longitudinal strain through speckle tracking. Results were evaluated through comparison to manual segmentation and measurements from 8666 echocardiograms obtained during the routine clinical workflow. Finally, we developed models to detect 3 diseases: hypertrophic cardiomyopathy, cardiac amyloid, and pulmonary arterial hypertension.Convolutional neural networks accurately identified views (eg, 96% for parasternal long axis), including flagging partially obscured cardiac chambers, and enabled the segmentation of individual cardiac chambers. The resulting cardiac structure measurements agreed with study report values (eg, median absolute deviations of 15% to 17% of observed values for left ventricular mass, left ventricular diastolic volume, and left atrial volume). In terms of function, we computed automated ejection fraction and longitudinal strain measurements (within 2 cohorts), which agreed with commercial software-derived values (for ejection fraction, median absolute deviation=9.7% of observed, N=6407 studies; for strain, median absolute deviation=7.5%, n=419, and 9.0%, n=110) and demonstrated applicability to serial monitoring of patients with breast cancer for trastuzumab cardiotoxicity. Overall, we found automated measurements to be comparable or superior to manual measurements across 11 internal consistency metrics (eg, the correlation of left atrial and ventricular volumes). Finally, we trained convolutional neural networks to detect hypertrophic cardiomyopathy, cardiac amyloidosis, and pulmonary arterial hypertension with C statistics of 0.93, 0.87, and 0.85, respectively.Our pipeline lays the groundwork for using automated interpretation to support serial patient tracking and scalable analysis of millions of echocardiograms archived within healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开开完成签到,获得积分10
刚刚
tao_blue发布了新的文献求助10
1秒前
1秒前
888完成签到,获得积分10
1秒前
饭神仙鱼完成签到,获得积分10
2秒前
KBYer发布了新的文献求助20
2秒前
Jzhang应助tmpstlml采纳,获得10
3秒前
YoYo发布了新的文献求助10
3秒前
豌豆发布了新的文献求助10
5秒前
6秒前
言叶完成签到,获得积分10
6秒前
7秒前
CipherSage应助清新的冷松采纳,获得10
7秒前
JamesPei应助Poyd采纳,获得10
8秒前
科目三应助药学牛马采纳,获得10
9秒前
lixm发布了新的文献求助10
10秒前
NAA完成签到,获得积分10
11秒前
11秒前
tao_blue完成签到,获得积分10
11秒前
荔枝完成签到,获得积分20
11秒前
11秒前
12秒前
许多知识完成签到,获得积分10
12秒前
缓慢的战斗机完成签到,获得积分20
13秒前
圣晟胜发布了新的文献求助10
13秒前
科研通AI5应助nextconnie采纳,获得10
14秒前
陈朝旧迹完成签到,获得积分10
14秒前
无花果应助虚心海燕采纳,获得10
15秒前
sun发布了新的文献求助30
16秒前
16秒前
KBYer完成签到,获得积分10
16秒前
FashionBoy应助阳阳采纳,获得10
16秒前
许多知识发布了新的文献求助10
17秒前
苏源智完成签到,获得积分10
17秒前
Andy完成签到 ,获得积分10
19秒前
明理晓霜发布了新的文献求助10
21秒前
ZHANGMANLI0422关注了科研通微信公众号
21秒前
M先生发布了新的文献求助30
22秒前
FashionBoy应助许多知识采纳,获得10
23秒前
Poyd完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849