3D printed spacers based on TPMS architectures for scaling control in membrane distillation

材料科学 渗透 接触角 膜蒸馏 结垢 表面粗糙度 化学工程 化学 复合材料 生物化学 工程类 海水淡化
作者
Navya Thomas,Nurshaun Sreedhar,Oraib Al‐Ketan,Reza Rowshan,Rashid K. Abu Al‐Rub,Hassan A. Arafat
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:581: 38-49 被引量:68
标识
DOI:10.1016/j.memsci.2019.03.039
摘要

In this study, the performance of novel 3D printed spacers was investigated for scaling control in direct contact membrane distillation (DCMD). The spacers, designed as triply periodic minimal surfaces (TPMS), were tested under calcium sulfate scaling conditions, with brine recycling leading to continuous feed concentration increase. The DCMD experiments were done using 1900 mg/L calcium sulfate as the starting feed solution at feed and permeate inlet temperatures of 65 and 35 °C, respectively, and feed and permeate flow velocity of 0.1 m/s. The best performing TPMS spacer, the tCLP design, resulted in a 50% flux increase (47 L m−2.h−1) in comparison to a commercial spacer, but at the expense of increased pressure drop (0.52 bar vs. 0.04 bar). The membrane in contact with the commercial spacer had higher scalant deposition than those in contact with the TPMS spacers. On the other hand, the surface micro-roughness of the TPMS spacers contributed to increased scalant deposition on the spacer itself. The calcium sulfate scalant deposition patterns on the fouled membranes were visualized by utilizing alizarin red S (ARS) staining, which was applied herein for the first time in characterizing membrane fouling. The ARS stains proved that the spacer contact region functioned as the scaling initiation sites. A hybrid spacer design combining two TPMS architectures, tCLP and Gyroid, was then investigated, which resulted in high flux performance on par with tCLP, but at a lower pressure drop penalty. The results highlight the prospective applications of 3D printed TPMS designs to control scaling in MD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉完成签到 ,获得积分10
4秒前
5秒前
淡如水完成签到 ,获得积分10
5秒前
雪山飞龙发布了新的文献求助30
9秒前
白米完成签到 ,获得积分10
15秒前
Eri_SCI完成签到 ,获得积分10
16秒前
ffff完成签到 ,获得积分10
19秒前
糊涂的雪旋完成签到 ,获得积分10
25秒前
roundtree完成签到 ,获得积分0
32秒前
33秒前
gent完成签到,获得积分10
36秒前
Karry完成签到 ,获得积分10
40秒前
lilylwy完成签到 ,获得积分10
43秒前
咸鱼爱喝汤完成签到 ,获得积分10
50秒前
shuangfeng1853完成签到 ,获得积分10
51秒前
56秒前
小柴胡颗粒完成签到 ,获得积分20
56秒前
鞑靼完成签到 ,获得积分10
1分钟前
666发布了新的文献求助10
1分钟前
魏白晴完成签到,获得积分10
1分钟前
文献互助1完成签到 ,获得积分10
1分钟前
郝君颖完成签到 ,获得积分10
1分钟前
nykal完成签到 ,获得积分10
1分钟前
上善若水呦完成签到 ,获得积分10
1分钟前
liner完成签到 ,获得积分10
1分钟前
海阔天空完成签到,获得积分10
1分钟前
水晶李完成签到 ,获得积分10
1分钟前
YifanWang完成签到,获得积分10
1分钟前
jason完成签到 ,获得积分10
1分钟前
thchiang完成签到 ,获得积分10
1分钟前
小陈完成签到,获得积分10
1分钟前
teaser完成签到 ,获得积分10
1分钟前
ewind完成签到 ,获得积分10
1分钟前
胖胖完成签到 ,获得积分10
1分钟前
细心的语蓉完成签到,获得积分10
1分钟前
凡人丿完成签到 ,获得积分10
1分钟前
2分钟前
123完成签到,获得积分10
2分钟前
小静完成签到 ,获得积分10
2分钟前
huisu发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146856
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826733
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565