Multi-Objective Evolutionary Federated Learning

计算机科学 可扩展性 联合学习 人工智能 人工神经网络 深度学习 卷积神经网络 云计算 机器学习 感知器 分布式计算 数据库 操作系统
作者
Hangyu Zhu,Yaochu Jin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (4): 1310-1322 被引量:211
标识
DOI:10.1109/tnnls.2019.2919699
摘要

Federated learning is an emerging technique used to prevent the leakage of private information. Unlike centralized learning that needs to collect data from users and store them collectively on a cloud server, federated learning makes it possible to learn a global model while the data are distributed on the users' devices. However, compared with the traditional centralized approach, the federated setting consumes considerable communication resources of the clients, which is indispensable for updating global models and prevents this technique from being widely used. In this paper, we aim to optimize the structure of the neural network models in federated learning using a multi-objective evolutionary algorithm to simultaneously minimize the communication costs and the global model test errors. A scalable method for encoding network connectivity is adapted to federated learning to enhance the efficiency in evolving deep neural networks. Experimental results on both multilayer perceptrons and convolutional neural networks indicate that the proposed optimization method is able to find optimized neural network models that can not only significantly reduce communication costs but also improve the learning performance of federated learning compared with the standard fully connected neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edisondc发布了新的文献求助10
1秒前
倒数21发布了新的文献求助10
1秒前
2秒前
2秒前
二十二点36完成签到,获得积分10
3秒前
3秒前
灵巧的含海完成签到,获得积分10
4秒前
锁模完成签到,获得积分10
5秒前
英姑应助shugefuhe采纳,获得10
5秒前
6秒前
7秒前
赵某人完成签到,获得积分10
7秒前
Diamond完成签到 ,获得积分10
7秒前
欣喜谷槐完成签到,获得积分20
7秒前
田様应助支雨泽采纳,获得10
8秒前
9秒前
9秒前
9秒前
慕青应助wallonce采纳,获得10
11秒前
航小航发布了新的文献求助10
11秒前
11秒前
黄黄黄哈完成签到,获得积分10
12秒前
小春卷完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
16秒前
17秒前
17秒前
Daodao完成签到 ,获得积分10
17秒前
曹帅哥发布了新的文献求助30
17秒前
跳跃的安阳完成签到,获得积分10
17秒前
刻苦的元风完成签到,获得积分10
18秒前
刘帅帅完成签到,获得积分10
19秒前
斯文败类应助知性的土豆采纳,获得10
19秒前
搜集达人应助青子采纳,获得10
20秒前
shugefuhe发布了新的文献求助10
21秒前
等待彩虹发布了新的文献求助10
21秒前
流星朵朵发布了新的文献求助10
21秒前
义气青雪完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483