支持向量机
振动
转子(电动)
涡轮机械
人工智能
断层(地质)
相关向量机
工程类
计算机科学
旋转(数学)
模式识别(心理学)
机械工程
声学
物理
地质学
地震学
作者
Allan Alves Pinheiro,Iago Modesto Brandao,Cesar da Costa
出处
期刊:European Journal of Engineering Research and Science
[European Open Access Publishing (Europa Publishing)]
日期:2019-02-17
卷期号:4 (2): 12-16
被引量:21
标识
DOI:10.24018/ejers.2019.4.2.1128
摘要
This study proposes a method for diagnosing faults in turbomachines using machine learning techniques. In this study, a support vector machine-SVM algorithm is proposed for fault diagnosis of rotor rotation imbalance. Recently, support vector machines (SVMs) have become one of the most popular classification methods in vibration analysis technology. Axis unbalance defect is classified using support vector machines. The experimental data is derived from the turbomachine model of the rigid-shaft rotor and the flexible bearings, and the experimental setup for vibration analysis. Several situations of unbalance defects have been successfully detected.
科研通智能强力驱动
Strongly Powered by AbleSci AI