High-Pressure PEM Water Electrolysis: in-Situ Measurement of Hydrogen Crossover

聚合物电解质膜电解 高压电解 电解 电解水 阳极 阴极 制氢 电解质 质子交换膜燃料电池 材料科学 渡线 化学 化学工程 核工程 电极 计算机科学 工程类 物理化学 人工智能 有机化学 生物化学
作者
Boris Bensmann,Richard Hanke‐Rauschenbach,Kai Sundmacher
出处
期刊:Meeting abstracts 卷期号:MA2014-01 (12): 573-573
标识
DOI:10.1149/ma2014-01/12/573
摘要

To ensure safe and efficient operation of polymer electrolyte membrane (PEM) water electrolyzers the determination of hydrogen crossover through the membrane-electrode-assemblies (MEA) is an important issue. Hydrogen crossover leads to a contamination of the oxygen product stream with the risk of the formation of explosive atmospheres within the anode channels. Additionally, the crossover flux represents a loss of product hydrogen, leading to an increase of the specific energy demand for the electrolysis. Especially under asymmetric (also named unbalanced or differential) pressure conditions (e.g. discussed by [1]), these losses can easily exceed the benefits connected with the electrochemical co-compression of the produced hydrogen [2]. The present contribution proposes an experimental method for the in-situ determination of hydrogen crossover in polymer electrolyte membrane water electrolysis cells [3]. The measurement concept is based on the electrochemical compensation of the hydrogen crossover flux, which translates the mass flux determination into an electric current measurement. The proposed method is based on a very simple set-up and measurement procedure, as well as high accuracy. It allows for measurement with a fully assembled electrolysis cell at standard water electrolysis conditions by use of standard equipment, also installed in industrial electrolyzer plants. The technique is especially suitable for high-pressure PEM electrolyzers operated under asymmetric pressure conditions. In Fig. 1(a) schematic of the employed set-up is shown. The anode side of the electrolyzer under investigation is operated throughout the whole experiment under the same conditions as during normal operation. The cathode side is equipped with a pressure transmitter and is disconnected from the rest of the plant, e.g. by means of a cutoff valve. The measurement principle is as follows: a small current is applied to the set-up described above. On the anode side, water is consumed and oxygen evolves. In the sealed cathode compartment hydrogen is evolved, which leads to a pressure increase over time. The cathode pressure reaches a steady-state value when the hydrogen loss, which is driven by the increasing pressure difference, levels out the hydrogen evolution (Eq. 1). d p cathode / d t = 0 <-> 0 = -G H2,crossover + i/2/F (1) Fig. 1(b),(c) illustrates one application of the described basic measurement principle. If the experiment is carried out repeatedly at different currents, it allows for a quick and simple characterization of MEA materials under electrolysis, since a relation between the cathode pressure and the hydrogen crossover flux can be obtained. The applicability of the suggested method for a broad pressure range is briefly illustrated with a laboratory scale electrolyzer plant and by comparison of the measured data with available literature values (Fig. 2) by use of the membrane permeability coefficient K p,H2 (Eq. 2): G H2,crossover = K p,H2 Δp H2 /t m (2) [1.] F. Marangio, M. Santarelli, M. Cali, International Journal of Hydrogen Energy 34 (2009) 1143–1158. [2.] B. Bensmann, R. Hanke-Rauschenbach, I. K. Pena Arias, K. Sundmacher, Electrochimica Acta 110 (2013), pp. 570-580 [3.] B. Bensmann, R. Hanke-Rauschenbach, K. Sundmacher, International Journal of Hydrogen Energy, In press. DOI 10.1016/j.ijhydene.2013.10.085

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是125应助www采纳,获得10
刚刚
小二郎应助鲜艳的棒棒糖采纳,获得10
刚刚
Zzzzzzzzzzz发布了新的文献求助10
刚刚
长情若魔发布了新的文献求助10
刚刚
酷酷酷完成签到,获得积分10
1秒前
1秒前
BaekHyun发布了新的文献求助10
2秒前
xuex1发布了新的文献求助10
2秒前
孙皓然完成签到 ,获得积分10
3秒前
5秒前
5秒前
7秒前
逐风给逐风的求助进行了留言
8秒前
科研通AI5应助灌饼采纳,获得30
8秒前
Owen应助Zzzzzzzzzzz采纳,获得10
9秒前
10秒前
11秒前
巫马秋寒应助笑点低可乐采纳,获得10
11秒前
xuex1完成签到,获得积分10
11秒前
情怀应助阳光的雁山采纳,获得10
13秒前
斯文败类应助jy采纳,获得10
13秒前
13秒前
日月轮回发布了新的文献求助10
14秒前
36456657应助木香采纳,获得10
15秒前
无花果应助ns采纳,获得30
15秒前
刘铭晨完成签到,获得积分10
15秒前
16秒前
YY发布了新的文献求助10
16秒前
Rrr发布了新的文献求助10
17秒前
学术蠕虫发布了新的文献求助10
17秒前
17秒前
miumiuka完成签到,获得积分10
18秒前
个性的薯片应助lyt采纳,获得20
20秒前
sweetbearm应助寒涛先生采纳,获得10
21秒前
wanci应助YY采纳,获得10
22秒前
22秒前
23秒前
23秒前
24秒前
HC完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808