微型多孔材料
颗粒
材料科学
多孔性
吸附
金属有机骨架
化学工程
储能
金属
纳米技术
有机化学
吸附
化学
复合材料
冶金
热力学
工程类
功率(物理)
物理
作者
Anastasia Permyakova,Oleksandr Skrylnyk,Emilie Courbon,Maame Affram,Sujing Wang,U‐Hwang Lee,Anil H. Valekar,Farid Nouar,Georges Mouchaham,Thomas Devic,Guy De Weireld,Jong‐San Chang,Nathalie Steunou,Marc Frère,Christian Serre
出处
期刊:Chemsuschem
[Wiley]
日期:2017-02-04
卷期号:10 (7): 1419-1426
被引量:138
标识
DOI:10.1002/cssc.201700164
摘要
The energy-storage capacities of a series of water-stable porous metal-organic frameworks, based on high-valence metal cations (Al3+ , Fe3+ , Cr3+ , Ti4+ , Zr4+ ) and polycarboxylate linkers, were evaluated under the typical conditions of seasonal energy-storage devices. The results showed that the microporous hydrophilic Al-dicarboxylate MIL-160(Al) exhibited one of the best performances. To assess the properties of this material for space-heating applications on a laboratory pilot scale with an open reactor, a new synthetic route involving safer, greener conditions was developed. This led to the production of MIL-160(Al) on a 400 g scale, before the material was shaped into pellets through a wet-granulation method. The material exhibited a very high energy-storage capacity for a physical-sorption material (343 Wh kg-1 ), which is in full agreement with the predicted value.
科研通智能强力驱动
Strongly Powered by AbleSci AI