益生菌
免疫系统
免疫学
微生物学
代谢物
微生物群
细菌
生物
医学
内科学
生物信息学
遗传学
作者
Inge Kepert,Juliano Fonseca,Constanze Müller,Katrin Milger,Kerstin Hochwind,Matea Kostrić,Maria Fedoseeva,Caspar Ohnmacht,Stefan Dehmel,Petra Nathan,Sabine Bartel,Oliver Eickelberg,Michael Schloter,Anton Hartmann,Philippe Schmitt‐Kopplin,Susanne Krauss‐Etschmann
标识
DOI:10.1016/j.jaci.2016.09.003
摘要
Chronic immune diseases, such as asthma, are highly prevalent. Currently available pharmaceuticals improve symptoms but cannot cure the disease. This prompted demands for alternatives to pharmaceuticals, such as probiotics, for the prevention of allergic disease. However, clinical trials have produced inconsistent results. This is at least partly explained by the highly complex crosstalk among probiotic bacteria, the host's microbiota, and immune cells. The identification of a bioactive substance from probiotic bacteria could circumvent this difficulty.We sought to identify and characterize a bioactive probiotic metabolite for potential prevention of allergic airway disease.Probiotic supernatants were screened for their ability to concordantly decrease the constitutive CCL17 secretion of a human Hodgkin lymphoma cell line and prevent upregulation of costimulatory molecules of LPS-stimulated human dendritic cells.Supernatants from 13 of 37 tested probiotic strains showed immunoactivity. Bioassay-guided chromatographic fractionation of 2 supernatants according to polarity, followed by total ion chromatography and mass spectrometry, yielded C11H12N2O2 as the molecular formula of a bioactive substance. Proton nuclear magnetic resonance and enantiomeric separation identified D-tryptophan. In contrast, L-tryptophan and 11 other D-amino acids were inactive. Feeding D-tryptophan to mice before experimental asthma induction increased numbers of lung and gut regulatory T cells, decreased lung TH2 responses, and ameliorated allergic airway inflammation and hyperresponsiveness. Allergic airway inflammation reduced gut microbial diversity, which was increased by D-tryptophan.D-tryptophan is a newly identified product from probiotic bacteria. Our findings support the concept that defined bacterial products can be exploited in novel preventative strategies for chronic immune diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI