Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules

接收机工作特性 恶性肿瘤 放射性武器 医学 人工智能 试验装置 肺癌 放射科 结核(地质) 模式识别(心理学) 病理 计算机科学 内科学 生物 古生物学
作者
Ying Liu,Yoganand Balagurunathan,Thomas Atwater,Sanja Antic,Qian Li,Ronald C. Walker,Gary T. Smith,Pierre P. Massion,Matthew B. Schabath,Robert J. Gillies
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (6): 1442-1449 被引量:99
标识
DOI:10.1158/1078-0432.ccr-15-3102
摘要

Abstract Purpose: We propose a systematic methodology to quantify incidentally identified pulmonary nodules based on observed radiological traits (semantics) quantified on a point scale and a machine-learning method using these data to predict cancer status. Experimental Design: We investigated 172 patients who had low-dose CT images, with 102 and 70 patients grouped into training and validation cohorts, respectively. On the images, 24 radiological traits were systematically scored and a linear classifier was built to relate the traits to malignant status. The model was formed both with and without size descriptors to remove bias due to nodule size. The multivariate pairs formed on the training set were tested on an independent validation data set to evaluate their performance. Results: The best 4-feature set that included a size measurement (set 1), was short axis, contour, concavity, and texture, which had an area under the receiver operator characteristic curve (AUROC) of 0.88 (accuracy = 81%, sensitivity = 76.2%, specificity = 91.7%). If size measures were excluded, the four best features (set 2) were location, fissure attachment, lobulation, and spiculation, which had an AUROC of 0.83 (accuracy = 73.2%, sensitivity = 73.8%, specificity = 81.7%) in predicting malignancy in primary nodules. The validation test AUROC was 0.8 (accuracy = 74.3%, sensitivity = 66.7%, specificity = 75.6%) and 0.74 (accuracy = 71.4%, sensitivity = 61.9%, specificity = 75.5%) for sets 1 and 2, respectively. Conclusions: Radiological image traits are useful in predicting malignancy in lung nodules. These semantic traits can be used in combination with size-based measures to enhance prediction accuracy and reduce false-positives. Clin Cancer Res; 23(6); 1442–9. ©2016 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gru发布了新的文献求助10
刚刚
1秒前
goldNAN完成签到,获得积分10
1秒前
dm11完成签到,获得积分10
2秒前
CodeCraft应助民族风采纳,获得10
2秒前
涛哥来科研完成签到 ,获得积分10
2秒前
从容的方盒完成签到 ,获得积分10
4秒前
4秒前
4秒前
英俊的铭应助哈哈哈哈哈采纳,获得10
4秒前
苏靖完成签到,获得积分10
6秒前
健康的电灯胆完成签到,获得积分10
7秒前
木蒙蒙完成签到,获得积分10
7秒前
友好冥王星完成签到 ,获得积分10
8秒前
9秒前
一千岛完成签到,获得积分10
9秒前
艾欧比完成签到 ,获得积分10
9秒前
RUI发布了新的文献求助10
9秒前
9秒前
sword完成签到,获得积分10
10秒前
orixero应助高工采纳,获得10
10秒前
11秒前
11秒前
13秒前
畅彤完成签到,获得积分10
13秒前
元神完成签到 ,获得积分10
14秒前
自信甜瓜应助希勤采纳,获得10
15秒前
小籽橘完成签到,获得积分10
15秒前
可以发布了新的文献求助10
16秒前
happiness完成签到 ,获得积分10
17秒前
18秒前
脑洞疼应助李雪松采纳,获得10
19秒前
就是躺应助veraonly采纳,获得10
19秒前
19秒前
小周不吃粥完成签到 ,获得积分10
19秒前
rosalieshi应助科研通管家采纳,获得100
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
rosalieshi应助科研通管家采纳,获得30
20秒前
桐桐应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011