Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules

接收机工作特性 恶性肿瘤 放射性武器 医学 人工智能 试验装置 肺癌 放射科 结核(地质) 模式识别(心理学) 病理 计算机科学 内科学 生物 古生物学
作者
Ying Liu,Yoganand Balagurunathan,Thomas Atwater,Sanja Antic,Qian Li,Ronald C. Walker,Gary T. Smith,Pierre P. Massion,Matthew B. Schabath,Robert J. Gillies
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (6): 1442-1449 被引量:99
标识
DOI:10.1158/1078-0432.ccr-15-3102
摘要

Abstract Purpose: We propose a systematic methodology to quantify incidentally identified pulmonary nodules based on observed radiological traits (semantics) quantified on a point scale and a machine-learning method using these data to predict cancer status. Experimental Design: We investigated 172 patients who had low-dose CT images, with 102 and 70 patients grouped into training and validation cohorts, respectively. On the images, 24 radiological traits were systematically scored and a linear classifier was built to relate the traits to malignant status. The model was formed both with and without size descriptors to remove bias due to nodule size. The multivariate pairs formed on the training set were tested on an independent validation data set to evaluate their performance. Results: The best 4-feature set that included a size measurement (set 1), was short axis, contour, concavity, and texture, which had an area under the receiver operator characteristic curve (AUROC) of 0.88 (accuracy = 81%, sensitivity = 76.2%, specificity = 91.7%). If size measures were excluded, the four best features (set 2) were location, fissure attachment, lobulation, and spiculation, which had an AUROC of 0.83 (accuracy = 73.2%, sensitivity = 73.8%, specificity = 81.7%) in predicting malignancy in primary nodules. The validation test AUROC was 0.8 (accuracy = 74.3%, sensitivity = 66.7%, specificity = 75.6%) and 0.74 (accuracy = 71.4%, sensitivity = 61.9%, specificity = 75.5%) for sets 1 and 2, respectively. Conclusions: Radiological image traits are useful in predicting malignancy in lung nodules. These semantic traits can be used in combination with size-based measures to enhance prediction accuracy and reduce false-positives. Clin Cancer Res; 23(6); 1442–9. ©2016 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子衿青青发布了新的文献求助10
1秒前
斯文败类应助Vanessa采纳,获得10
1秒前
Yu应助丁丁峥采纳,获得10
3秒前
mmmm完成签到,获得积分10
3秒前
hhh发布了新的文献求助10
3秒前
静静地学习完成签到,获得积分10
4秒前
5秒前
CipherSage应助雪白发卡采纳,获得10
5秒前
syc应助藜藜藜在乎你采纳,获得10
6秒前
6秒前
7秒前
123完成签到,获得积分10
7秒前
霸气映之完成签到,获得积分10
8秒前
SYLH应助苗苗043采纳,获得20
9秒前
schen发布了新的文献求助30
10秒前
香蕉觅云应助原象采纳,获得10
10秒前
李博完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
打打应助Hoshiiii采纳,获得10
11秒前
12秒前
hope完成签到,获得积分10
13秒前
hhh完成签到,获得积分10
13秒前
雪雪完成签到 ,获得积分10
14秒前
15秒前
ZO发布了新的文献求助10
15秒前
闪闪茉莉发布了新的文献求助10
15秒前
16秒前
Erislastem完成签到,获得积分10
17秒前
17秒前
ller发布了新的文献求助10
19秒前
香蕉觅云应助简约生活采纳,获得10
19秒前
紫薇的舔狗完成签到,获得积分10
19秒前
FashionBoy应助愉快的语堂采纳,获得10
20秒前
20秒前
22秒前
山前完成签到,获得积分10
22秒前
原象发布了新的文献求助10
23秒前
ronnie完成签到,获得积分10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226