Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules

接收机工作特性 恶性肿瘤 放射性武器 医学 人工智能 试验装置 肺癌 放射科 结核(地质) 模式识别(心理学) 病理 计算机科学 内科学 生物 古生物学
作者
Ying Liu,Yoganand Balagurunathan,Thomas Atwater,Sanja Antic,Qian Li,Ronald C. Walker,Gary T. Smith,Pierre P. Massion,Matthew B. Schabath,Robert J. Gillies
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (6): 1442-1449 被引量:99
标识
DOI:10.1158/1078-0432.ccr-15-3102
摘要

Abstract Purpose: We propose a systematic methodology to quantify incidentally identified pulmonary nodules based on observed radiological traits (semantics) quantified on a point scale and a machine-learning method using these data to predict cancer status. Experimental Design: We investigated 172 patients who had low-dose CT images, with 102 and 70 patients grouped into training and validation cohorts, respectively. On the images, 24 radiological traits were systematically scored and a linear classifier was built to relate the traits to malignant status. The model was formed both with and without size descriptors to remove bias due to nodule size. The multivariate pairs formed on the training set were tested on an independent validation data set to evaluate their performance. Results: The best 4-feature set that included a size measurement (set 1), was short axis, contour, concavity, and texture, which had an area under the receiver operator characteristic curve (AUROC) of 0.88 (accuracy = 81%, sensitivity = 76.2%, specificity = 91.7%). If size measures were excluded, the four best features (set 2) were location, fissure attachment, lobulation, and spiculation, which had an AUROC of 0.83 (accuracy = 73.2%, sensitivity = 73.8%, specificity = 81.7%) in predicting malignancy in primary nodules. The validation test AUROC was 0.8 (accuracy = 74.3%, sensitivity = 66.7%, specificity = 75.6%) and 0.74 (accuracy = 71.4%, sensitivity = 61.9%, specificity = 75.5%) for sets 1 and 2, respectively. Conclusions: Radiological image traits are useful in predicting malignancy in lung nodules. These semantic traits can be used in combination with size-based measures to enhance prediction accuracy and reduce false-positives. Clin Cancer Res; 23(6); 1442–9. ©2016 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
从容问寒完成签到,获得积分10
1秒前
kisa发布了新的文献求助30
1秒前
失眠亦寒发布了新的文献求助10
2秒前
2秒前
2秒前
Lord完成签到 ,获得积分10
2秒前
光亮不凡发布了新的文献求助10
2秒前
2秒前
JIAYU发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
orixero应助啦啦啦啦la采纳,获得10
3秒前
4秒前
4秒前
5秒前
无情宝川完成签到,获得积分20
5秒前
ksrcc发布了新的文献求助10
6秒前
7秒前
搜集达人应助deepast采纳,获得10
7秒前
科研通AI6应助能干雁凡采纳,获得10
7秒前
duanhaha关注了科研通微信公众号
8秒前
田...发布了新的文献求助10
8秒前
激昂的冬日完成签到,获得积分10
9秒前
化悲愤高压完成签到,获得积分20
9秒前
阿谭完成签到,获得积分10
10秒前
机灵千万完成签到,获得积分10
10秒前
左手的左手是左手完成签到,获得积分10
11秒前
11秒前
FashionBoy应助joey采纳,获得10
11秒前
kinase发布了新的文献求助10
12秒前
12秒前
丘比特应助小瑞儿采纳,获得10
13秒前
fucccboi发布了新的文献求助10
13秒前
duanhaha关注了科研通微信公众号
14秒前
嘻嘻哈哈应助郭子仪采纳,获得10
16秒前
17秒前
力王发布了新的文献求助10
17秒前
六橙橙发布了新的文献求助20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Integrating supply and demand-side management in renewable-based energy systems 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5250747
求助须知:如何正确求助?哪些是违规求助? 4415057
关于积分的说明 13743840
捐赠科研通 4286471
什么是DOI,文献DOI怎么找? 2352035
邀请新用户注册赠送积分活动 1348863
关于科研通互助平台的介绍 1308407