已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based COPD identification using multiple instance learning with two-stage attention

慢性阻塞性肺病 特征(语言学) 肺活量测定 计算机科学 人工智能 学习迁移 阶段(地层学) 聚类分析 医学 深度学习 特征学习 领域(数学分析) 机器学习 模式识别(心理学) 内科学 数学 哲学 数学分析 古生物学 哮喘 生物 语言学
作者
Mengfan Xue,Shishen Jia,Ling Chen,Hailiang Huang,Yu Lijuan,Wentao Zhu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:230: 107356-107356 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107356
摘要

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. However, COPD remains underdiagnosed globally. Spirometry is currently the primary tool for diagnosing COPD, but it has unneglected difficulties in detecting mild COPD. Chest computed tomography (CT) has been validated for COPD diagnosis and quantification. Whereas many CT-based deep learning approaches have been developed to identify COPD, it remains challenging to characterize CT-based pathological alternations of COPD which are multidimensional and highly spatially heterogeneous, and the diagnosis performance still needs to be improved.A multiple instance learning (MIL) with two-stage attention (TSA-MIL) is proposed to identify COPD using CT images. Based on transfer learning, a Resnet-50 model pre-trained on natural images is used to extract multicomponent and multidimensional features of COPD abnormalities, in which a pseudo-color method is designed to transfer single-channel CT slices to RGB-like three channels and meanwhile increase the richness of feature representations. To generate more robust attention score for each instance, a two-stage attention module is utilized with the first stage aiming at discovering the key instance while the second stage correcting the attention score for each instance by calculating its average relative distance to the key instances; besides, an instance-level clustering over feature domain is exploited to further improve feature separability and therefore facilitate the subsequent attention module. CT scans, spirometry and demographic data of a total of 800 participants were collected from a large public hospital, with 720 and 80 participants used for model development and evaluation, respectively. In addition, data of 260 participants from another large hospital were also collected for external validation.The proposed TSA-MIL approach outperforms not only most of the advanced MIL models, but also other up-to-date COPD identification methods, with an accuracy of 0.9200 and an area under curve (AUC) of 0.9544 on the test set, and with an accuracy of 0.8115 and an AUC of 0.8737 on the external validation set without multicenter effect reduction, which is clinically acceptable. Therefore, this approach is promising to be a powerful tool for COPD diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QQQQQQQQQ关注了科研通微信公众号
刚刚
1秒前
张三发布了新的文献求助10
3秒前
4秒前
4秒前
zhangHR完成签到 ,获得积分20
5秒前
5秒前
Ico发布了新的文献求助10
5秒前
cyw关注了科研通微信公众号
6秒前
6秒前
8秒前
糊涂完成签到 ,获得积分10
9秒前
10秒前
IV完成签到,获得积分10
10秒前
duang发布了新的文献求助10
11秒前
11秒前
受伤白猫发布了新的文献求助10
11秒前
隐形曼青应助清风采纳,获得10
12秒前
浮游应助AIR采纳,获得10
12秒前
12秒前
超人强发布了新的文献求助10
12秒前
糊涂关注了科研通微信公众号
13秒前
13秒前
李李发布了新的文献求助10
13秒前
华仔应助朝与暮采纳,获得10
15秒前
三三椋椋发布了新的文献求助10
15秒前
酷酷幻梦发布了新的文献求助10
16秒前
totoro发布了新的文献求助10
16秒前
16秒前
白板完成签到,获得积分10
17秒前
酷bile完成签到,获得积分10
17秒前
Lina完成签到,获得积分10
18秒前
上官若男应助chloe采纳,获得10
18秒前
cyw发布了新的文献求助10
18秒前
木火完成签到,获得积分10
18秒前
19秒前
羊羊发布了新的文献求助10
19秒前
可可完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919