亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based COPD identification using multiple instance learning with two-stage attention

慢性阻塞性肺病 特征(语言学) 肺活量测定 计算机科学 人工智能 学习迁移 阶段(地层学) 聚类分析 医学 深度学习 特征学习 领域(数学分析) 机器学习 模式识别(心理学) 内科学 数学 哲学 数学分析 古生物学 哮喘 生物 语言学
作者
Mengfan Xue,Shishen Jia,Ling Chen,Hailiang Huang,Yu Lijuan,Wentao Zhu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:230: 107356-107356 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107356
摘要

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. However, COPD remains underdiagnosed globally. Spirometry is currently the primary tool for diagnosing COPD, but it has unneglected difficulties in detecting mild COPD. Chest computed tomography (CT) has been validated for COPD diagnosis and quantification. Whereas many CT-based deep learning approaches have been developed to identify COPD, it remains challenging to characterize CT-based pathological alternations of COPD which are multidimensional and highly spatially heterogeneous, and the diagnosis performance still needs to be improved.A multiple instance learning (MIL) with two-stage attention (TSA-MIL) is proposed to identify COPD using CT images. Based on transfer learning, a Resnet-50 model pre-trained on natural images is used to extract multicomponent and multidimensional features of COPD abnormalities, in which a pseudo-color method is designed to transfer single-channel CT slices to RGB-like three channels and meanwhile increase the richness of feature representations. To generate more robust attention score for each instance, a two-stage attention module is utilized with the first stage aiming at discovering the key instance while the second stage correcting the attention score for each instance by calculating its average relative distance to the key instances; besides, an instance-level clustering over feature domain is exploited to further improve feature separability and therefore facilitate the subsequent attention module. CT scans, spirometry and demographic data of a total of 800 participants were collected from a large public hospital, with 720 and 80 participants used for model development and evaluation, respectively. In addition, data of 260 participants from another large hospital were also collected for external validation.The proposed TSA-MIL approach outperforms not only most of the advanced MIL models, but also other up-to-date COPD identification methods, with an accuracy of 0.9200 and an area under curve (AUC) of 0.9544 on the test set, and with an accuracy of 0.8115 and an AUC of 0.8737 on the external validation set without multicenter effect reduction, which is clinically acceptable. Therefore, this approach is promising to be a powerful tool for COPD diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
Nyan发布了新的文献求助10
11秒前
12秒前
Ann完成签到,获得积分10
26秒前
沉默的倔驴发布了新的文献求助150
32秒前
38秒前
54秒前
54秒前
黑神白了发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Donger完成签到 ,获得积分10
1分钟前
含蓄的白安完成签到,获得积分10
1分钟前
1分钟前
1分钟前
好运常在完成签到 ,获得积分10
1分钟前
切尔顿发布了新的文献求助10
1分钟前
kuoping完成签到,获得积分0
1分钟前
Criminology34举报迷路诗蕊求助涉嫌违规
1分钟前
GIA完成签到,获得积分10
2分钟前
2分钟前
wanci应助沉默的倔驴采纳,获得10
2分钟前
2分钟前
辣椒完成签到 ,获得积分10
2分钟前
Criminology34举报神勇山槐求助涉嫌违规
3分钟前
3分钟前
华仔应助伊力扎提采纳,获得10
3分钟前
3分钟前
如意蚂蚁发布了新的文献求助10
3分钟前
orixero应助Mario采纳,获得10
3分钟前
3分钟前
初始发布了新的文献求助10
3分钟前
如意蚂蚁完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
木昜发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746752
求助须知:如何正确求助?哪些是违规求助? 5438610
关于积分的说明 15355852
捐赠科研通 4886774
什么是DOI,文献DOI怎么找? 2627426
邀请新用户注册赠送积分活动 1575893
关于科研通互助平台的介绍 1532627