CT-based COPD identification using multiple instance learning with two-stage attention

慢性阻塞性肺病 特征(语言学) 肺活量测定 计算机科学 人工智能 学习迁移 阶段(地层学) 聚类分析 医学 深度学习 特征学习 领域(数学分析) 机器学习 模式识别(心理学) 内科学 数学 哲学 数学分析 古生物学 哮喘 生物 语言学
作者
Mengfan Xue,Shishen Jia,Ling Chen,Hailiang Huang,Yu Lijuan,Wentao Zhu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:230: 107356-107356 被引量:14
标识
DOI:10.1016/j.cmpb.2023.107356
摘要

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. However, COPD remains underdiagnosed globally. Spirometry is currently the primary tool for diagnosing COPD, but it has unneglected difficulties in detecting mild COPD. Chest computed tomography (CT) has been validated for COPD diagnosis and quantification. Whereas many CT-based deep learning approaches have been developed to identify COPD, it remains challenging to characterize CT-based pathological alternations of COPD which are multidimensional and highly spatially heterogeneous, and the diagnosis performance still needs to be improved.A multiple instance learning (MIL) with two-stage attention (TSA-MIL) is proposed to identify COPD using CT images. Based on transfer learning, a Resnet-50 model pre-trained on natural images is used to extract multicomponent and multidimensional features of COPD abnormalities, in which a pseudo-color method is designed to transfer single-channel CT slices to RGB-like three channels and meanwhile increase the richness of feature representations. To generate more robust attention score for each instance, a two-stage attention module is utilized with the first stage aiming at discovering the key instance while the second stage correcting the attention score for each instance by calculating its average relative distance to the key instances; besides, an instance-level clustering over feature domain is exploited to further improve feature separability and therefore facilitate the subsequent attention module. CT scans, spirometry and demographic data of a total of 800 participants were collected from a large public hospital, with 720 and 80 participants used for model development and evaluation, respectively. In addition, data of 260 participants from another large hospital were also collected for external validation.The proposed TSA-MIL approach outperforms not only most of the advanced MIL models, but also other up-to-date COPD identification methods, with an accuracy of 0.9200 and an area under curve (AUC) of 0.9544 on the test set, and with an accuracy of 0.8115 and an AUC of 0.8737 on the external validation set without multicenter effect reduction, which is clinically acceptable. Therefore, this approach is promising to be a powerful tool for COPD diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦A涵发布了新的文献求助10
刚刚
222发布了新的文献求助10
刚刚
1秒前
科研通AI6应助jyyg采纳,获得30
1秒前
桥桥发布了新的文献求助10
1秒前
小二郎应助zjl采纳,获得10
1秒前
浮游应助skyer1采纳,获得10
2秒前
2秒前
可爱的函函应助tuzi采纳,获得50
4秒前
领导范儿应助十一号采纳,获得10
4秒前
丹寒完成签到,获得积分10
4秒前
4秒前
顾矜应助HYF采纳,获得10
5秒前
咪咪摸摸发布了新的文献求助10
5秒前
chen发布了新的文献求助10
6秒前
优秀发布了新的文献求助20
6秒前
Murphy_H完成签到,获得积分10
6秒前
小解完成签到 ,获得积分10
6秒前
李爱国应助asd_1采纳,获得10
6秒前
7秒前
8秒前
Jerry发布了新的文献求助20
8秒前
10秒前
12秒前
12秒前
simple1完成签到 ,获得积分10
12秒前
万能图书馆应助chen采纳,获得10
12秒前
李君然发布了新的文献求助10
13秒前
13秒前
13秒前
碧蓝安露完成签到,获得积分10
14秒前
Fudongxue完成签到,获得积分10
15秒前
Maestro_S应助jyyg采纳,获得10
15秒前
NIUBEN发布了新的文献求助10
15秒前
Grinder发布了新的文献求助10
16秒前
16秒前
桃桃发布了新的文献求助10
16秒前
16秒前
17秒前
素直发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426