亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based COPD identification using multiple instance learning with two-stage attention

慢性阻塞性肺病 特征(语言学) 肺活量测定 计算机科学 人工智能 学习迁移 阶段(地层学) 聚类分析 医学 深度学习 特征学习 领域(数学分析) 机器学习 模式识别(心理学) 内科学 数学 哲学 数学分析 古生物学 哮喘 生物 语言学
作者
Mengfan Xue,Shishen Jia,Ling Chen,Hailiang Huang,Yu Lijuan,Wentao Zhu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:230: 107356-107356 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107356
摘要

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. However, COPD remains underdiagnosed globally. Spirometry is currently the primary tool for diagnosing COPD, but it has unneglected difficulties in detecting mild COPD. Chest computed tomography (CT) has been validated for COPD diagnosis and quantification. Whereas many CT-based deep learning approaches have been developed to identify COPD, it remains challenging to characterize CT-based pathological alternations of COPD which are multidimensional and highly spatially heterogeneous, and the diagnosis performance still needs to be improved.A multiple instance learning (MIL) with two-stage attention (TSA-MIL) is proposed to identify COPD using CT images. Based on transfer learning, a Resnet-50 model pre-trained on natural images is used to extract multicomponent and multidimensional features of COPD abnormalities, in which a pseudo-color method is designed to transfer single-channel CT slices to RGB-like three channels and meanwhile increase the richness of feature representations. To generate more robust attention score for each instance, a two-stage attention module is utilized with the first stage aiming at discovering the key instance while the second stage correcting the attention score for each instance by calculating its average relative distance to the key instances; besides, an instance-level clustering over feature domain is exploited to further improve feature separability and therefore facilitate the subsequent attention module. CT scans, spirometry and demographic data of a total of 800 participants were collected from a large public hospital, with 720 and 80 participants used for model development and evaluation, respectively. In addition, data of 260 participants from another large hospital were also collected for external validation.The proposed TSA-MIL approach outperforms not only most of the advanced MIL models, but also other up-to-date COPD identification methods, with an accuracy of 0.9200 and an area under curve (AUC) of 0.9544 on the test set, and with an accuracy of 0.8115 and an AUC of 0.8737 on the external validation set without multicenter effect reduction, which is clinically acceptable. Therefore, this approach is promising to be a powerful tool for COPD diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于yu完成签到 ,获得积分10
26秒前
47秒前
开心完成签到 ,获得积分10
51秒前
Re发布了新的文献求助10
51秒前
sidashu完成签到,获得积分10
54秒前
无花果应助Re采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
自律发布了新的文献求助10
2分钟前
脑洞疼应助wzy采纳,获得10
2分钟前
比格大王应助clearlove采纳,获得10
2分钟前
2分钟前
wzy发布了新的文献求助10
2分钟前
悟空爱吃酥橙完成签到,获得积分10
2分钟前
2分钟前
自律完成签到,获得积分10
2分钟前
ma121完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
刺1656发布了新的文献求助10
3分钟前
3分钟前
jiangmi完成签到,获得积分10
4分钟前
Sene完成签到,获得积分10
4分钟前
andrele应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
感动初蓝完成签到 ,获得积分10
5分钟前
橘橘橘子皮完成签到 ,获得积分10
5分钟前
5分钟前
蒙恩Maria发布了新的文献求助10
5分钟前
6分钟前
蒙恩Maria完成签到,获得积分10
6分钟前
Pattis完成签到 ,获得积分10
6分钟前
鲸鱼完成签到 ,获得积分10
6分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
我是老大应助科研通管家采纳,获得10
7分钟前
bkagyin应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443