亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based COPD identification using multiple instance learning with two-stage attention

慢性阻塞性肺病 特征(语言学) 肺活量测定 计算机科学 人工智能 学习迁移 阶段(地层学) 聚类分析 医学 深度学习 特征学习 领域(数学分析) 机器学习 模式识别(心理学) 内科学 数学 哲学 数学分析 古生物学 哮喘 生物 语言学
作者
Mengfan Xue,Shishen Jia,Ling Chen,Hailiang Huang,Yu Lijuan,Wentao Zhu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:230: 107356-107356 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107356
摘要

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. However, COPD remains underdiagnosed globally. Spirometry is currently the primary tool for diagnosing COPD, but it has unneglected difficulties in detecting mild COPD. Chest computed tomography (CT) has been validated for COPD diagnosis and quantification. Whereas many CT-based deep learning approaches have been developed to identify COPD, it remains challenging to characterize CT-based pathological alternations of COPD which are multidimensional and highly spatially heterogeneous, and the diagnosis performance still needs to be improved.A multiple instance learning (MIL) with two-stage attention (TSA-MIL) is proposed to identify COPD using CT images. Based on transfer learning, a Resnet-50 model pre-trained on natural images is used to extract multicomponent and multidimensional features of COPD abnormalities, in which a pseudo-color method is designed to transfer single-channel CT slices to RGB-like three channels and meanwhile increase the richness of feature representations. To generate more robust attention score for each instance, a two-stage attention module is utilized with the first stage aiming at discovering the key instance while the second stage correcting the attention score for each instance by calculating its average relative distance to the key instances; besides, an instance-level clustering over feature domain is exploited to further improve feature separability and therefore facilitate the subsequent attention module. CT scans, spirometry and demographic data of a total of 800 participants were collected from a large public hospital, with 720 and 80 participants used for model development and evaluation, respectively. In addition, data of 260 participants from another large hospital were also collected for external validation.The proposed TSA-MIL approach outperforms not only most of the advanced MIL models, but also other up-to-date COPD identification methods, with an accuracy of 0.9200 and an area under curve (AUC) of 0.9544 on the test set, and with an accuracy of 0.8115 and an AUC of 0.8737 on the external validation set without multicenter effect reduction, which is clinically acceptable. Therefore, this approach is promising to be a powerful tool for COPD diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清河海风发布了新的文献求助30
3秒前
leonzhou完成签到,获得积分20
6秒前
科研通AI2S应助Autumnuer采纳,获得30
15秒前
Hello应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
susu应助科研通管家采纳,获得10
21秒前
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
21秒前
田様应助科研通管家采纳,获得10
21秒前
Schroenius完成签到 ,获得积分10
28秒前
28秒前
英姑应助跟我回江南采纳,获得10
30秒前
32秒前
yinlao完成签到,获得积分10
47秒前
47秒前
Judy完成签到 ,获得积分10
49秒前
Miao发布了新的文献求助10
51秒前
ai zs发布了新的文献求助10
53秒前
1分钟前
清河海风发布了新的文献求助10
1分钟前
RobiN完成签到,获得积分0
1分钟前
柠檬柠檬完成签到 ,获得积分10
1分钟前
qqq完成签到 ,获得积分10
1分钟前
lienne完成签到,获得积分10
1分钟前
寻道图强应助欧皇采纳,获得30
1分钟前
鲁路修完成签到,获得积分10
1分钟前
OYE完成签到,获得积分20
1分钟前
SciGPT应助黄12采纳,获得10
1分钟前
对照完成签到 ,获得积分10
1分钟前
FengYun完成签到 ,获得积分0
1分钟前
1分钟前
满意的小鸽子完成签到,获得积分10
1分钟前
Becky完成签到 ,获得积分10
1分钟前
1分钟前
榆木逢冰完成签到 ,获得积分10
1分钟前
忧郁的火车完成签到,获得积分10
1分钟前
yjj发布了新的文献求助10
2分钟前
2分钟前
畅畅儿歌发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162254
求助须知:如何正确求助?哪些是违规求助? 2813280
关于积分的说明 7899524
捐赠科研通 2472567
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631335
版权声明 602142