Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau

缩小尺度 环境科学 遥感 数据同化 校准 图像分辨率 均方误差 高原(数学) 气象学 计算机科学 地质学 人工智能 数学 降水 地理 数学分析 统计
作者
Shuzhe Huang,Xiang Zhang,Chao Wang,Nengcheng Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 346-363 被引量:12
标识
DOI:10.1016/j.isprsjprs.2023.02.009
摘要

Current remote sensing techniques fail to observe and generate large scale multi-layer soil moisture (SM) due to the inherent features of the satellite sensors. The lack of comprehensive understanding of multi-layer SM hinders the sustainable development of agriculture, hydrology, and food security. In order to overcome the depth barrier of traditional SM assimilation and downscaling methods, we developed a Two-step Multi-layer SM Downscaling (TMSMD) framework by fusing multi-source remotely sensed, reanalysis, and in-situ data through both machine learning and state-of-the-art deep learning models to generate multi-layer SM. The produced multi-layer SM was characterized by high resolution (1 km), high spatio-temporal continuity (cloud-free and daily), and high accuracy (i.e., 3H data). Firstly, the coarse resolution SMAP SM was downscaled to 1 km spatial resolution using LightGBM to weaken the effects of scale mismatch issue and provide high-resolution input for the subsequent calibration. Results indicated that the downscaled SMAP SM remained high consistency with the original SMAP SM product. With the high-resolution inputs, we calibrated the downscaled SMAP SM using multi-layer in-situ SM through state-of-the-art attention-based LSTM. Results demonstrated that the average PCC, RMSE, ubRMSE, and MAE were improved by 22.3 %, 50.7 %, 26.2 %, and 56.7 % compared to SMAP L4 SM while 38.5 %, 52.1 %, 29.5 %, and 58.7 % compared to downscaled SMAP SM. Further spatio-temporal and comparative analysis confirmed that the multi-layer SM produced by the TMSMD framework had excellent performance in capturing the spatial and temporal dynamics. In conclude, the proposed TMSMD framework successfully generated 3H multi-layer SM data and is promising for accurate assessment and monitoring in agriculture, water resources, and environmental domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怪奇物语发布了新的文献求助10
1秒前
1秒前
小黑黑发布了新的文献求助10
1秒前
1秒前
Frank应助8y24dp采纳,获得10
2秒前
米尔克浦发布了新的文献求助10
2秒前
隐形曼青应助简单玉米采纳,获得10
2秒前
大力发布了新的文献求助10
2秒前
无语的盈完成签到,获得积分10
2秒前
3秒前
朝阳完成签到,获得积分10
3秒前
4秒前
4秒前
desson完成签到,获得积分10
4秒前
小刘完成签到,获得积分10
4秒前
4秒前
老迟到的晓露完成签到,获得积分20
4秒前
4秒前
4秒前
宁雨欣发布了新的文献求助10
4秒前
crome完成签到,获得积分20
5秒前
6秒前
Hannah发布了新的文献求助10
6秒前
kkkk发布了新的文献求助10
6秒前
NexusExplorer应助小郭采纳,获得10
6秒前
tomiallen发布了新的文献求助10
6秒前
幽默梦之完成签到 ,获得积分10
6秒前
今后应助Xenotia采纳,获得10
7秒前
7秒前
科研通AI6应助咕噜咕噜采纳,获得40
7秒前
7秒前
8秒前
hua发布了新的文献求助10
8秒前
xyh发布了新的文献求助10
9秒前
tomjim100发布了新的文献求助10
9秒前
Willowpsy关注了科研通微信公众号
9秒前
kk发布了新的文献求助10
9秒前
9秒前
LLLx发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512626
求助须知:如何正确求助?哪些是违规求助? 4607098
关于积分的说明 14503038
捐赠科研通 4542487
什么是DOI,文献DOI怎么找? 2489056
邀请新用户注册赠送积分活动 1471133
关于科研通互助平台的介绍 1443219