Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau

缩小尺度 环境科学 遥感 数据同化 校准 图像分辨率 均方误差 高原(数学) 气象学 计算机科学 地质学 人工智能 数学 降水 地理 数学分析 统计
作者
Shuzhe Huang,Xiang Zhang,Chao Wang,Nengcheng Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 346-363 被引量:12
标识
DOI:10.1016/j.isprsjprs.2023.02.009
摘要

Current remote sensing techniques fail to observe and generate large scale multi-layer soil moisture (SM) due to the inherent features of the satellite sensors. The lack of comprehensive understanding of multi-layer SM hinders the sustainable development of agriculture, hydrology, and food security. In order to overcome the depth barrier of traditional SM assimilation and downscaling methods, we developed a Two-step Multi-layer SM Downscaling (TMSMD) framework by fusing multi-source remotely sensed, reanalysis, and in-situ data through both machine learning and state-of-the-art deep learning models to generate multi-layer SM. The produced multi-layer SM was characterized by high resolution (1 km), high spatio-temporal continuity (cloud-free and daily), and high accuracy (i.e., 3H data). Firstly, the coarse resolution SMAP SM was downscaled to 1 km spatial resolution using LightGBM to weaken the effects of scale mismatch issue and provide high-resolution input for the subsequent calibration. Results indicated that the downscaled SMAP SM remained high consistency with the original SMAP SM product. With the high-resolution inputs, we calibrated the downscaled SMAP SM using multi-layer in-situ SM through state-of-the-art attention-based LSTM. Results demonstrated that the average PCC, RMSE, ubRMSE, and MAE were improved by 22.3 %, 50.7 %, 26.2 %, and 56.7 % compared to SMAP L4 SM while 38.5 %, 52.1 %, 29.5 %, and 58.7 % compared to downscaled SMAP SM. Further spatio-temporal and comparative analysis confirmed that the multi-layer SM produced by the TMSMD framework had excellent performance in capturing the spatial and temporal dynamics. In conclude, the proposed TMSMD framework successfully generated 3H multi-layer SM data and is promising for accurate assessment and monitoring in agriculture, water resources, and environmental domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
摆烂fish完成签到,获得积分10
1秒前
袁地镜发布了新的文献求助60
1秒前
小田睡不醒完成签到,获得积分10
1秒前
1秒前
1秒前
FashionBoy应助maodou采纳,获得10
2秒前
zongzi12138完成签到,获得积分0
2秒前
Yeyuntian发布了新的文献求助10
2秒前
Purplesky完成签到,获得积分10
3秒前
流风回雪完成签到,获得积分20
3秒前
wanci应助博慧采纳,获得10
3秒前
li完成签到,获得积分10
4秒前
4秒前
张旭卓完成签到,获得积分10
4秒前
DrKe完成签到,获得积分10
4秒前
灵巧晓山完成签到,获得积分10
5秒前
可爱的函函应助MY采纳,获得10
5秒前
5秒前
流风回雪发布了新的文献求助10
5秒前
感动水杯发布了新的文献求助10
5秒前
WW发布了新的文献求助30
5秒前
顺利琦发布了新的文献求助10
6秒前
Hina完成签到,获得积分10
6秒前
耕牛热完成签到,获得积分10
6秒前
YJJ完成签到,获得积分20
7秒前
平淡惋清完成签到,获得积分10
7秒前
三问白完成签到,获得积分10
7秒前
不知完成签到 ,获得积分10
7秒前
复杂冬亦完成签到,获得积分10
8秒前
93完成签到,获得积分10
8秒前
何佳宁发布了新的文献求助10
8秒前
Ava应助沈星星采纳,获得10
8秒前
liaoliaoliao完成签到,获得积分10
9秒前
9秒前
舍瓦完成签到,获得积分10
9秒前
9秒前
10秒前
共享精神应助Yeyuntian采纳,获得10
10秒前
小怪兽完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259