Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau

缩小尺度 环境科学 遥感 数据同化 校准 图像分辨率 均方误差 高原(数学) 气象学 计算机科学 地质学 人工智能 数学 降水 地理 数学分析 统计
作者
Shuzhe Huang,Xiang Zhang,Chao Wang,Nengcheng Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 346-363 被引量:12
标识
DOI:10.1016/j.isprsjprs.2023.02.009
摘要

Current remote sensing techniques fail to observe and generate large scale multi-layer soil moisture (SM) due to the inherent features of the satellite sensors. The lack of comprehensive understanding of multi-layer SM hinders the sustainable development of agriculture, hydrology, and food security. In order to overcome the depth barrier of traditional SM assimilation and downscaling methods, we developed a Two-step Multi-layer SM Downscaling (TMSMD) framework by fusing multi-source remotely sensed, reanalysis, and in-situ data through both machine learning and state-of-the-art deep learning models to generate multi-layer SM. The produced multi-layer SM was characterized by high resolution (1 km), high spatio-temporal continuity (cloud-free and daily), and high accuracy (i.e., 3H data). Firstly, the coarse resolution SMAP SM was downscaled to 1 km spatial resolution using LightGBM to weaken the effects of scale mismatch issue and provide high-resolution input for the subsequent calibration. Results indicated that the downscaled SMAP SM remained high consistency with the original SMAP SM product. With the high-resolution inputs, we calibrated the downscaled SMAP SM using multi-layer in-situ SM through state-of-the-art attention-based LSTM. Results demonstrated that the average PCC, RMSE, ubRMSE, and MAE were improved by 22.3 %, 50.7 %, 26.2 %, and 56.7 % compared to SMAP L4 SM while 38.5 %, 52.1 %, 29.5 %, and 58.7 % compared to downscaled SMAP SM. Further spatio-temporal and comparative analysis confirmed that the multi-layer SM produced by the TMSMD framework had excellent performance in capturing the spatial and temporal dynamics. In conclude, the proposed TMSMD framework successfully generated 3H multi-layer SM data and is promising for accurate assessment and monitoring in agriculture, water resources, and environmental domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的静柏完成签到 ,获得积分10
刚刚
浪迹天涯发布了新的文献求助10
刚刚
刚刚
风清扬发布了新的文献求助10
1秒前
vivianxy完成签到,获得积分10
1秒前
qwer完成签到,获得积分10
1秒前
陈乐宁2024发布了新的文献求助10
1秒前
鲸鱼发布了新的文献求助10
2秒前
英姑应助可靠的白枫采纳,获得10
2秒前
阳光珍发布了新的文献求助10
2秒前
沉默的莞发布了新的文献求助10
3秒前
cxy_2010发布了新的文献求助10
3秒前
zmq完成签到,获得积分10
4秒前
孙捕发布了新的文献求助10
5秒前
5秒前
6秒前
年华完成签到,获得积分10
6秒前
7秒前
胡可发布了新的文献求助50
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
QQ发布了新的文献求助10
10秒前
善学以致用应助李木子hust采纳,获得10
10秒前
HZC发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
在水一方应助陈乐宁2024采纳,获得10
11秒前
11秒前
羽客发布了新的文献求助10
12秒前
汉堡包应助形随将至采纳,获得10
12秒前
12秒前
Dipsy发布了新的文献求助10
12秒前
孙捕完成签到,获得积分10
12秒前
wdsdfkl发布了新的文献求助10
13秒前
13秒前
14秒前
kwan完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144