Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau

缩小尺度 环境科学 遥感 数据同化 校准 图像分辨率 均方误差 高原(数学) 气象学 计算机科学 地质学 人工智能 数学 降水 地理 数学分析 统计
作者
Shuzhe Huang,Xiang Zhang,Chao Wang,Nengcheng Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 346-363 被引量:12
标识
DOI:10.1016/j.isprsjprs.2023.02.009
摘要

Current remote sensing techniques fail to observe and generate large scale multi-layer soil moisture (SM) due to the inherent features of the satellite sensors. The lack of comprehensive understanding of multi-layer SM hinders the sustainable development of agriculture, hydrology, and food security. In order to overcome the depth barrier of traditional SM assimilation and downscaling methods, we developed a Two-step Multi-layer SM Downscaling (TMSMD) framework by fusing multi-source remotely sensed, reanalysis, and in-situ data through both machine learning and state-of-the-art deep learning models to generate multi-layer SM. The produced multi-layer SM was characterized by high resolution (1 km), high spatio-temporal continuity (cloud-free and daily), and high accuracy (i.e., 3H data). Firstly, the coarse resolution SMAP SM was downscaled to 1 km spatial resolution using LightGBM to weaken the effects of scale mismatch issue and provide high-resolution input for the subsequent calibration. Results indicated that the downscaled SMAP SM remained high consistency with the original SMAP SM product. With the high-resolution inputs, we calibrated the downscaled SMAP SM using multi-layer in-situ SM through state-of-the-art attention-based LSTM. Results demonstrated that the average PCC, RMSE, ubRMSE, and MAE were improved by 22.3 %, 50.7 %, 26.2 %, and 56.7 % compared to SMAP L4 SM while 38.5 %, 52.1 %, 29.5 %, and 58.7 % compared to downscaled SMAP SM. Further spatio-temporal and comparative analysis confirmed that the multi-layer SM produced by the TMSMD framework had excellent performance in capturing the spatial and temporal dynamics. In conclude, the proposed TMSMD framework successfully generated 3H multi-layer SM data and is promising for accurate assessment and monitoring in agriculture, water resources, and environmental domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霍师傅发布了新的文献求助10
刚刚
丁点发布了新的文献求助10
刚刚
konoraha发布了新的文献求助10
1秒前
香蕉觅云应助mookie采纳,获得10
1秒前
SciGPT应助mahuahua采纳,获得10
2秒前
2秒前
英俊的铭应助霍师傅采纳,获得10
3秒前
蜡笔小新发布了新的文献求助10
3秒前
Owen应助cy采纳,获得10
3秒前
4秒前
6秒前
6秒前
6秒前
6秒前
7秒前
严好香完成签到 ,获得积分10
7秒前
7秒前
8秒前
长度2到发布了新的文献求助10
9秒前
9秒前
hyman1218发布了新的文献求助50
9秒前
君子扑火完成签到,获得积分10
9秒前
淡定的勒完成签到,获得积分10
10秒前
10秒前
浅笑_随风发布了新的文献求助10
10秒前
yinzenglinnn发布了新的文献求助10
10秒前
10秒前
zhangguo发布了新的文献求助100
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
李健应助完美平灵采纳,获得10
11秒前
11秒前
11秒前
打打应助konoraha采纳,获得10
11秒前
neufy发布了新的文献求助10
11秒前
nighwalk发布了新的文献求助10
12秒前
豌豆射手发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515