Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau

缩小尺度 环境科学 遥感 数据同化 校准 图像分辨率 均方误差 高原(数学) 气象学 计算机科学 地质学 人工智能 数学 降水 地理 数学分析 统计
作者
Shuzhe Huang,Xiang Zhang,Chao Wang,Nengcheng Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 346-363 被引量:12
标识
DOI:10.1016/j.isprsjprs.2023.02.009
摘要

Current remote sensing techniques fail to observe and generate large scale multi-layer soil moisture (SM) due to the inherent features of the satellite sensors. The lack of comprehensive understanding of multi-layer SM hinders the sustainable development of agriculture, hydrology, and food security. In order to overcome the depth barrier of traditional SM assimilation and downscaling methods, we developed a Two-step Multi-layer SM Downscaling (TMSMD) framework by fusing multi-source remotely sensed, reanalysis, and in-situ data through both machine learning and state-of-the-art deep learning models to generate multi-layer SM. The produced multi-layer SM was characterized by high resolution (1 km), high spatio-temporal continuity (cloud-free and daily), and high accuracy (i.e., 3H data). Firstly, the coarse resolution SMAP SM was downscaled to 1 km spatial resolution using LightGBM to weaken the effects of scale mismatch issue and provide high-resolution input for the subsequent calibration. Results indicated that the downscaled SMAP SM remained high consistency with the original SMAP SM product. With the high-resolution inputs, we calibrated the downscaled SMAP SM using multi-layer in-situ SM through state-of-the-art attention-based LSTM. Results demonstrated that the average PCC, RMSE, ubRMSE, and MAE were improved by 22.3 %, 50.7 %, 26.2 %, and 56.7 % compared to SMAP L4 SM while 38.5 %, 52.1 %, 29.5 %, and 58.7 % compared to downscaled SMAP SM. Further spatio-temporal and comparative analysis confirmed that the multi-layer SM produced by the TMSMD framework had excellent performance in capturing the spatial and temporal dynamics. In conclude, the proposed TMSMD framework successfully generated 3H multi-layer SM data and is promising for accurate assessment and monitoring in agriculture, water resources, and environmental domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
托丽莲睡拿完成签到,获得积分10
刚刚
刚刚
刚刚
DAYTOY发布了新的文献求助50
1秒前
杀出个黎明举报求助违规成功
1秒前
whatever举报求助违规成功
1秒前
iNk举报求助违规成功
1秒前
1秒前
linxue完成签到,获得积分10
1秒前
蛋蛋1完成签到,获得积分10
2秒前
2秒前
3秒前
ss发布了新的文献求助10
3秒前
SHJ完成签到,获得积分20
3秒前
海棠听风发布了新的文献求助10
4秒前
23发布了新的文献求助10
4秒前
xde145完成签到,获得积分10
4秒前
5秒前
shime完成签到,获得积分10
5秒前
费城青年发布了新的文献求助10
5秒前
5秒前
6秒前
SHDeathlock给SHDeathlock的求助进行了留言
7秒前
7秒前
7秒前
马静雨发布了新的文献求助50
8秒前
拼搏起眸发布了新的文献求助10
9秒前
二二二发布了新的文献求助10
9秒前
科目三应助柴火烧叽采纳,获得10
9秒前
啊实打实的卡完成签到,获得积分10
9秒前
orixero应助大智若愚啊采纳,获得10
9秒前
Z.完成签到 ,获得积分10
9秒前
DD发布了新的文献求助10
10秒前
daliu完成签到,获得积分10
10秒前
在水一方应助帅气鹭洋采纳,获得10
10秒前
王玉琴完成签到,获得积分10
11秒前
悦耳寒松完成签到,获得积分10
11秒前
费城青年完成签到,获得积分10
11秒前
晴子发布了新的文献求助20
11秒前
meta完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794